• Title/Summary/Keyword: textile sensibility

Search Result 183, Processing Time 0.028 seconds

The Consumer Acceptance of MP3-playing Clothing and Bio-Signal Sensing Clothing Considered in the Technology Acceptance Model (혁신기술수용모델의 관점에서 고찰한 MP3-playing 의류와 생체신호 센싱 의류의 수용도)

  • Chae, Jin-Mie;Cho, Hyun-Seung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.12 no.3
    • /
    • pp.289-298
    • /
    • 2009
  • An analysis was carried out for this study to figure out if there exists any differences in the model consumers accept for commercialized MP3-playing clothing and bio-signal sensing clothing. To analyze the differences of the structural variables of the products types, t-test was conducted with SPSS 15.0 package and multi-group analysis with AMOS 5.0 to find out the differences of each path goes with product types in structural equation model. In analytical results of effective sample of 557 copies of questionnaire, consumers' were highly aware of MP3-playing clothing in perceived ease of use, while they were aware relatively high of bio-signal sensing clothing in perceived usefulness, attitudes, consumer acceptance. The perceived value which was input to find out consumers awareness about sale price of commercialized products, was proven to do very important moderating role in forming consumers' attitudes and acceptance intention. Besides, consumers showed a difference in path in accepting model goes with product types. In bio-signal sensing clothing case, 'the perceived usefulness$\rightarrow$attitudes' path which was backed up in MP3-playing clothing was rejected, and 'perceived value$\rightarrow$attitudes' path appeared relatively high with moderating role of perceived value higher than MP3-playing clothing. Considering the results above, as the smart clothing is in the initiative commercialization stage while consumers were in the inquiry stage into awareness or information necessary in the course of purchase decision-making, and so an effective commercialization strategy seems to be necessary.

  • PDF

Effect of the Shape and Attached Position of Fabric Sensors on the Sensing Performance of Limb-motion Sensing Clothes (직물 센서의 모양과 부착 위치가 사지 동작 센싱 의류의 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Jeon, Dong-Jin;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.141-150
    • /
    • 2017
  • The purpose of this study was to analyze the effect of the shape and attached position of E-textile-based stretchable sensors on motion-sensing performance and to investigate the requirements for the optimal structure of clothes for sensing limb motions. An experimental garment was prepared with different sensor shapes, and attachment positions. A child subject, wearing the experimental garment, performed arm and leg bending and extension motions at $60^{\circ}$, $90^{\circ}$ and $120^{\circ}$ motion angles, at a rate of 60 deg/sec. The changes in voltage triggered by the stretching and contracting of the fabric-sensor were measured, and an acceleration sensor was utilized to verify that the experimental motions were correctly performed. Dummy arms and legs of a child were manufactured to perform an identical test, in order to compare the dummy results with the actual human body experiment results. The analysis showed that the reproducibility and reliability of the rectangular sensor, showing uniform and stable were higher than those of the boat-shaped sensor, in both the dummy and the human body experiments. The attachment position of the sensor was more reproducible and reliable when placed on 4 cm below the elbow and knee joints in the dummy test, when placed in the joints of the elbow and knee, in children experiment. The appropriate shapes and attached positions of the sensor for sensing the motions were analyzed, and the results proved that motion-sensing of the human body is possible by utilizing flexible fabric-sensors integrated into clothes.

Heat Generation Characteristics of Emotional and Intelligent ZrC Imbedded Garment through Thermal Manikin Measurement (탄화지르코늄 함유 감성 인텔리전트 의류의 써멀 마네킹 측정에 의한 발열 특성)

  • Kim, Hyunah;Kim, Seungjin
    • Science of Emotion and Sensibility
    • /
    • v.18 no.3
    • /
    • pp.17-24
    • /
    • 2015
  • This study investigated heat generation characteristics of knitted and woven intelligent garments made of ZrC imbedded yarns through thermal manikin measurement. These emotional and intelligent thermal characteristics by thermal manikin measurement were analysed and compared with light/thermal radiation experimental results. Surface temperature of ZrC imbedded woven and knitted fabrics by light/thermal radiation measurement was $4^{\circ}C$ and $2^{\circ}C$ higher than that of regular PET control fabrics, respectively. Clo value as heat generation characteristics of ZrC imbedded woven and knitted garments with light exposure was 0.14 and 0.08 higher than that of regular PET control garments, respectively. These results were attributed to the far-infrared thermal radiation from ZrC imbedded in the core part of the intelligent bi-component filament, which was verified by far-infrared emissive power ranged between $6{\mu}m$ and $20{\mu}m$ through FT-IR experiment and by inclusion of Zr through EDS ingredient analysis. However, compressibility of ZrC imbedded woven fabric was lower than that of regular PET one, and bending rigidity was higher than that of regular one, which resulted in a little stiff tactile hand property of ZrC imbedded fabric. We found that ZrC imbedded intelligent woven and knitted fabrics were applicable to the intelligent garment as a heat generation textile material by thermal manikin measurement.

An Exploratory Research for Development of Design of Sensor-based Smart Clothing - Focused on the Healthcare Clothing Based on Bio-monitoring Technology - (센서 기반형 스마트 의류의 디자인 개발을 위한 탐색적 연구 - 생체 신호 센서 기술에 기반한 건강관리용 의류를 중심으로 -)

  • Cho Ha-Kyung;Lee Joo-Hyeon;Lee Chung-Keun;Lee Myoung-Ho
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.141-150
    • /
    • 2006
  • Since the late 1990s, 'smart clothing' has been developed in a various way to meet the need of users and to help people more friendly interact with computers through its various designs. Recently, various applications of smart clothing concept have been presented by researchers. Among the various applications, smart clothing with a health care system is most likely to gain the highest demand rate in the market. Among them, smart clothing for check-up of health status with its sensors is expected to sell better than other types of smart clothing on the market. Under this circumstance, research and development for this field have been accelerated furthermore. This research institution has invented biometric sensors suitable for the smart clothing, and has developed a design to diagnose various diseases such as cardiac disorder and respiratory diseases. The newly developed smart clothing in this study looks similar to the previous inventions, but people can feel more comfortable in it with its fabric interaction built in it. When people wear it, the health status of the wearers is diagnosed and its signals are transmitted to the connected computer so the result can be easily monitored in real time. This smart clothing is a new kind of clothing as a supporting system for preventing various cardiac disorder and respiratory diseases using its biometric sensor built-in, and is also an archetype to show how smart clothing can work on the market.

  • PDF

A Study on Consumer Acceptance toward the Commercialized Smart Clothing (상용화된 스마트 의류제품에 대한 소비자의 수용도)

  • Chae, Jin-Mie;Cho, Hyun-Seung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.181-192
    • /
    • 2009
  • The purpose of this study was to explain the attitudes and acceptance toward the smart clothing adopted by the TAM(Technology Acceptance Model). A theoretical model on consumer acceptance of the commercialized smart clothing was constructed on the basis of previous studies and a review of literature and tested the path analysis. For the data analysis, statistical methods of confirmatory factor analysis, correlation, and covariance structural analysis using AMOS 5.0 package were employed. The results from a web-based survey of 557 online consumers indicate that the TAM by Davis(1989) adopted by perceived value according to market price was able to explain consumer acceptance of smart clothing substantially well. Using structural equation modeling, eight of the six hypotheses investigated in this study were supported. The results of the testing of the hypothesis were as fellows: First, perceived ease of use had a side effect on attitude through perceived usefulness. In addition, the attitude was found to affect consumer acceptance. Second, perceived usefulness was found to affect consumer attitude on perceived value, however, had not significant effect on consumer acceptance toward smart clothing. Third, perceived value was found to affect both consumer acceptance and attitude toward smart clothing. Finally, the attitude toward smart clothing had a direct effect on the consumer acceptance.

  • PDF

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

A Study of Design Process for Sensor-based Smart clothing based on requirement engineering (요구공학을 적용한 센서기반 스마트 의류 디자인 프로세스 연구)

  • Cho, Hakyung;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.397-408
    • /
    • 2013
  • According to increase of concerning in health and entry of aging society, sensor-based smart clothing has developed various type and applications. Sensor-based smart clothing should be designed with considering of the interaction between a human body-device-clothing, such as accuracy of signal, wearability, suitability and the configuration of the sensor and so on. In this respect, these characteristics distinguish sensor-based smart clothing process from clothing process and Sensor-based smart clothing process is expected to be needing requirements Specification for development purpose and interoperability assessment based on requirements engineering. In this study, to assess efficiency of process based on requirement engineering, the sensor-based smart clothing process was deducted in two types by analysis of empirical performance. Presented two process were empirically evaluated through qualitative and quantitative evaluation. As a result, design process II based on requiments engineering were confirmed more effective process than processI.

  • PDF

An Investigation on the Development of Healthcare Smart Clothing (건강관리 지원형 스마트 의류 제품 개발을 위한 가능성 탐색)

  • Moon Hui-Sung;Cho Hyun-Seung;Lee Joo-Hyeon;Jung Hyo-Il
    • Science of Emotion and Sensibility
    • /
    • v.9 no.1
    • /
    • pp.77-84
    • /
    • 2006
  • In this study, there was emphasis in presenting a basic direction for the development of a healthcare smart clothing that could monitor diseases. It was also important that the clothing be user-friendly, for everyday life. For achieving this purpose , we studied major health indicators and essential technologies for developing healthcare smart clothing, and carried out the consumer research regarding healthcare smart clothing so it would appeal to consumers. As a result, there was a high demand for clothing that could diagnose diseases such as hypertension, diabetes and metabolic diseases, for all age groups. Thus, its marketability was predicted to be high. The results of this study will become an important index in developing future healthcare smart clothing.

  • PDF