• Title/Summary/Keyword: text extraction

Search Result 459, Processing Time 0.031 seconds

Text Extraction and Skew Detection in Natural Scenes (자연 영상에서의 텍스트 추출 및 기울기 추출)

  • 최규담;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.346-349
    • /
    • 2003
  • 본 논문은 실내외에서 얻어진 자연 영상으로부터 텍스트를 추출하는 방법과 추출되어진 텍스트가 기울어져 있을 경우 기울기 각도를 추정하고 보정하는 방법을 제안한다 이런 모든 과정은 4단계로 수행된다. 명도 이미지를 대상으로 첫째 자연 영상에서 에지 검출 처리를 위한 전처리 단계와 둘째 에지 검출과 세선화를 통한 잡음영상 및 선 제거, 텍스트 특징을 이용한 후보영역 검출단계로 이루어지고 셋째 그 텍스트 후보영역 안에서 이진화를 수행하고 불필요한 비텍스트 연결 요소를 추려내어 제거 함으로써 텍스트를 추출한다. 마지막은 후처리로써 추출된 텍스트의 기울기 각도를 추정하고 추정 된 각도만큼 회전함으로써 기울어진 텍스트를 보정한다 본 연구는 다양한 자연 영상을 대상으로 실험한 결과, 본 논문의 유용성과 정확한 텍스트추출을 확인하였다.

  • PDF

Automatic Text Extraction in Video Images using Morphology (모폴로지을 이용한 비디오 영상에서의 자동 문자 추출)

  • 장인영;고병철;김길천;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.418-420
    • /
    • 2001
  • 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 본 논문에서는 일차적으로 입력 컬러 영상을 그레이 영상으로 변환한 후 입력 영상의 명암 대비를 강화시키기 위해 명암 대비 스트레칭을 적용한다. 이후 명암 대비 스트레칭된 영상의 분할을 위해 적응적 임계값을 적용하고 다음 단계에서 문자와 유사한 영역들을 적당한 크기 의 structuring element를 이용하여 제거하는 1차 하부 단계와 모폴로지 녹임(erosion)을 적용한 영상과 모폴로지(열림닫힘[OpenClose]+닫힘열림[CloseOpen])/2가 적용된 영상 사이의 차이 영상을 구하는 2차 하부 단계를 적용시킨다. 마지막 단계에서 각 후보 영역들 중 실제 자막 영역을 추출해내기 위해, 후보 문자 영역의 화소수 비율과 외곽선의 화소수의 비율, 그리고 장축과 단축간의 비율 등에 대해 필터링을 적용한다. 본 논문에서는 임의의 300개의 뉴스영상을 입력 값으로 실험한 결과 93.6%의 우수한 인식률을 얻을 수 있었다. 또한 본 논문에서 제안한 방법은 structuring element의 크기 조절을 통해 크기가 다른 다양한 이미지에서도 좋은 성능을 거둘 수 있다.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Image Comparison Using Directional Expansion Operation

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.173-177
    • /
    • 2018
  • Masks are generated by adding different fonts of learning data characters in pixel unit, and pixel values belonging to each of the masks are divided into 3 groups. Using the directional expansion operators, we expand the text area of the test data character into 4 diagonal directions in order to create the boundary areas to distinguish it from the background area. A mask with a minimum average discordance is selected as the final recognition result by calculating the degree of discordance between the expanded test data and the masks. Image comparison using directional expansion operations more accurately recognizes test data through 4 subdivided recognition processes. It is also possible to expand the ranges of 3 groups of pixel values of masks more evenly such that new fonts can easily be added to the given learning data.

A Method for Unknown-Word Extraction from Korean Text (한국어 구문 분석기를 이용한 지명 추정 시스템 설계 및 구현)

  • Lee, Hyun-Suk;Ha, You-Sun;Kim, Tae-Hyun;Lee, Mann-Ho;Myaeng, Sung-Hyon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.383-386
    • /
    • 2000
  • 본 논문에서는 학습데이터를 이용하여 텍스트로부터 미등록 고유명사를 추정하는 방법을 제안한다. 고유명사 추정을 위해 먼저 형태소 분석기를 이용하여 품사가 명사인 단어들을 후보단어로 선택한다. 이렇게 선택된 후보단어가 고유명사인지 추정해 보기 위해 학습데이터를 이용하여 구성한 정보집합을 사용한다. 이러한 정보집합으로는 이름집합, 접미사집합, 단서집합, 배제어 집합이 있다. 본 논문에서는 이런 정보를 이용하여 한국어 지명을 추정하는 시스템을 구현하여 실험한 결과 77.2%의 정확도와 84.9%의 재현율을 보였다.

  • PDF

Text Categorization using Topic Signature and Co-occurrence Features (Topic Signature와 동시 출현 단어 쌍을 이용한 문서 범주화)

  • Bae, Won-Sik;Han, Yo-Sub;Cha, Jeong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.262-267
    • /
    • 2008
  • 본 논문에서는 문서 내에서 동시에 출현하는 단어 쌍을 자질 추출 단위로 하는 문서 범주화 시스템에 대하여 기술한다. 자질 추출 단위를 단어 쌍으로 정의한 것은 문서에서 빈번하게 동시에 출현하는 단어들은 서로 연관관계가 높으며, 단어 하나보다는 연관관계가 높은 단어들의 쌍이 특정 범주의 문서에서만 나타날 확률이 높아지므로 문서 분류 능력을 높이는데 좋은 요인으로 작용할 수 있을 것이라는 가정 때문이다. 그리고 문서 요약 분야에서 제안된 Log-likelihood Ratio를 기반으로 하는 Topic Signature Term Extraction 방법을 사용하여 자질 추출을 하고, Naive Bayes 분류기를 이용하여 문서를 분류한다. 본 연구는 Reuters-21578 문서 집합을 이용한 성능평가에서 좋은 결과를 보였으며, 이는 앞으로의 연구에도 기여할 수 있을 것이라 기대한다.

  • PDF

Text Extraction and Word Grouping using 3D Area-Weighted Graph in Document (문서 이미지에서 문자 추출과 3차원 면적-가중치 그래프를 이용한 단어 그룹핑)

  • 옥세영;박환철;조환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.556-558
    • /
    • 1998
  • 이미지 분석이나 데이터 베이스 인덱싱 또는 종이 문서를 전자 문서화 하는 문제는컴퓨터 비젼 응용분야에서 중요 관심사가 되어왔다. 이러한 문제들을 처리하기 위해서는 제일 먼저 이미지와 문자가 혼합되어 있는 문서에서 자동으로 문자와 이미지들을 분리해 내는 과정이 필수 적이다. 본 논문에서는 신문이나 광고등에서 볼 수 있는 이미지, 음각 문자와 양각 문자가 섞여 있는 문서에서 문자만을 추출하는 알고리즘을 제안한다. 이 알고리즘은 Run-length code를 이용하여 문자나 이미지의 경계선(bound) 모양의 특징을 추출하여 음각 문자와 이미지, 양각 문자를 구분한다. 그리고 추출된 글자들을 3차원 공간상에 매핑한 후 3차원 면적 가중치 그래프를 이용하여 관련된 단어들로 묶어주는 3차원 그룹핑 알고리즘을 제시한다. 실험결과로는 추출된 문자와 그룹핑된 결과를 보여준다.

  • PDF

Pattern Matching Automata for the Extraction of Protein Names (단백질 이름 추출을 위한 패턴 매칭 오토마타)

  • Park Jun-Hyung;Hong Ki-Ho;Yang Ji-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.28-30
    • /
    • 2006
  • 텍스트마이닝(text mining) 기법을 통해 생물학 문헌으로부터 단백질 이름과 그들 간의 상호 관계를 추출하는 시스템이 제안된 바 있다[1]. 이 시스템에서 단백질 이름을 추출하는 과정을 패턴 일치 오토마타(PMA: Pattern Matching Automata)라는 방법을 이용하여 좀 더 유연하고 높은 성능을 가지도록 개선할 수 있었다. 본 논문은 예제를 통해 PMA의 학습, 테스트 과정과 결과를 설명함으로써 단백질 이름 추출작업에서의 PMA의 가능성과 성능 향상을 위한 앞으로의 방안을 제시한다.

  • PDF

Research on a Model of Extracting Persons' Information Based on Statistic Method and Conceptual Knowledge

  • Wei, XiangFeng;Jia, Ning;Zhang, Quan;Zang, HanFen
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.508-514
    • /
    • 2007
  • In order to extract some important information of a person from text, an extracting model was proposed. The person's name is recognized based on the maximal entropy statistic model and the training corpus. The sentences surrounding the person's name are analyzed according to the conceptual knowledge base. The three main elements of events, domain, situation and background, are also extracted from the sentences to construct the structure of events about the person.

  • PDF

Text Extraction using Character-Edge Map Feature From Scene Images (장면 이미지로부터 문자-에지 맵 특징을 이용한 텍스트 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • 본 연구는 장면 이미지로부터 텍스트에 존재하는 문자-에지 특징을 이용하여 텍스트를 추출하는 방법을 제안한다. 캐니(Canny)에지 연산자를 이용하여 장면 이미지로부터 에지를 추출하고, 추출된 에지로부터 16종류의 에지-맵 생성한다. 생성된 에지 맵을 재구성하여 문자 특징을 갖는 8종류의 문자-에지 맵을 만단다. 텍스트는 배경과 잘 분리되는 특징이 있으므로 텍스트에 존재하는 '문자-에지 맵'의 특징을 이용하여 텍스트를 추출한다. 텍스트 영역에 대한 검증은 문자-에지 맵의 분포와 텍스트에 존재하는 글자간의 공백 특징으로 한다. 제안한 방법은 다양한 종류의 장면 이미지를 실험대상으로 하였고, 텍스트는 적어도 2글자 이상으로 구성된다는 제한조건과 너무 크거나 작은 텍스트는 텍스트 추출에서 제외하였다. 실험결과 텍스트 영역 추출률은 약 83%를 얻었다.

  • PDF