• Title/Summary/Keyword: text extraction

Search Result 459, Processing Time 0.022 seconds

Academic Conference Categorization According to Subjects Using Topical Information Extraction from Conference Websites (학회 웹사이트의 토픽 정보추출을 이용한 주제에 따른 학회 자동분류 기법)

  • Lee, Sue Kyoung;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.61-77
    • /
    • 2017
  • Recently, the number of academic conference information on the Internet has rapidly increased, the automatic classification of academic conference information according to research subjects enables researchers to find the related academic conference efficiently. Information provided by most conference listing services is limited to title, date, location, and website URL. However, among these features, the only feature containing topical words is title, which causes information insufficiency problem. Therefore, we propose methods that aim to resolve information insufficiency problem by utilizing web contents. Specifically, the proposed methods the extract main contents from a HTML document collected by using a website URL. Based on the similarity between the title of a conference and its main contents, the topical keywords are selected to enforce the important keywords among the main contents. The experiment results conducted by using a real-world dataset showed that the use of additional information extracted from the conference websites is successful in improving the conference classification performances. We plan to further improve the accuracy of conference classification by considering the structure of websites.

Terminology Recognition System based on Machine Learning for Scientific Document Analysis (과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템)

  • Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo;Jeong, Chang-Hoo;Choi, Sung-Pil
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.329-338
    • /
    • 2011
  • Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.

An Analysis of the 2017 Korean Presidential Election Using Text Mining (텍스트 마이닝을 활용한 2017년 한국 대선 분석)

  • An, Eunhee;An, Jungkook
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.199-207
    • /
    • 2020
  • Recently, big data analysis has drawn attention in various fields as it can generate value from large amounts of data and is also used to run political campaigns or predict results. However, existing research had limitations in compiling information about candidates at a high-level by analyzing only specific SNS data. Therefore, this study analyses news trends, topics extraction, sentiment analysis, keyword analysis, comment analysis for the 2017 presidential election of South Korea. The results show that various topics had been generated, and online opinions are extracted for trending keywords of respective candidates. This study also shows that portal news and comments can serve as useful tools for predicting the public's opinion on social issues. This study will This paper advances a building strategic course of action by providing a method of analyzing public opinion across various fields.

A Statistical Approach for Extracting and Miming Relation between Concepts (개념간 관계의 추출과 명명을 위한 통계적 접근방법)

  • Kim Hee-soo;Choi Ikkyu;Kim Minkoo
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.479-486
    • /
    • 2005
  • The ontology was proposed to construct the logical basis of semantic web. Ontology represents domain knowledge in the formal form and it enables that machine understand domain knowledge and provide appropriate intelligent service for user request. However, the construction and the maintenance of ontology requires large amount of cost and human efforts. This paper proposes an automatic ontology construction method for defining relation between concepts in the documents. The Proposed method works as following steps. First we find concept pairs which compose association rule based on the concepts in domain specific documents. Next, we find pattern that describes the relation between concepts by clustering the context between two concepts composing association rule. Last, find generalized pattern name by clustering the clustered patterns. To verify the proposed method, we extract relation between concepts and evaluate the result using documents set provide by TREC(Text Retrieval Conference). The result shows that proposed method cant provide useful information that describes relation between concepts.

A Korean Text Summarization System Using Aggregate Similarity (도합유사도를 이용한 한국어 문서요약 시스템)

  • 김재훈;김준홍
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.35-42
    • /
    • 2001
  • In this paper. a document is represented as a weighted graph called a text relationship map. In the graph. a node represents a vector of nouns in a sentence, an edge completely connects other nodes. and a weight on the edge is a value of the similarity between two nodes. The similarity is based on the word overlap between the corresponding nodes. The importance of a node. called an aggregate similarity in this paper. is defined as the sum of weights on the links connecting it to other nodes on the map. In this paper. we present a Korean text summarization system using the aggregate similarity. To evaluate our system, we used two test collection, one collection (PAPER-InCon) consists of 100 papers in the field of computer science: the other collection (NEWS) is composed of 105 articles in the newspapers and had built by KOROlC. Under the compression rate of 20%. we achieved the recall of 46.6% (PAPER-InCon) and 30.5% (NEWS) and the precision of 76.9% (PAPER-InCon) and 42.3% (NEWS).

  • PDF

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

Analysis of the National Police Agency business trends using text mining (텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석)

  • Sun, Hyunseok;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.301-317
    • /
    • 2019
  • There has been significant research conducted on how to discover various insights through text data using statistical techniques. In this study we analyzed text data produced by the Korean National Police Agency to identify trends in the work by year and compare work characteristics among local authorities by identifying distinctive keywords in documents produced by each local authority. A preprocessing according to the characteristics of each data was conducted and the frequency of words for each document was calculated in order to draw a meaningful conclusion. The simple term frequency shown in the document is difficult to describe the characteristics of the keywords; therefore, the frequency for each term was newly calculated using the term frequency-inverse document frequency weights. The L2 norm normalization technique was used to compare the frequency of words. The analysis can be used as basic data that can be newly for future police work improvement policies and as a method to improve the efficiency of the police service that also help identify a demand for improvements in indoor work.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

Feature selection for text data via sparse principal component analysis (희소주성분분석을 이용한 텍스트데이터의 단어선택)

  • Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.501-514
    • /
    • 2023
  • When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.

Construction of Text Summarization Corpus in Economics Domain and Baseline Models

  • Sawittree Jumpathong;Akkharawoot Takhom;Prachya Boonkwan;Vipas Sutantayawalee;Peerachet Porkaew;Sitthaa Phaholphinyo;Charun Phrombut;Khemarath Choke-mangmi;Saran Yamasathien;Nattachai Tretasayuth;Kasidis Kanwatchara;Atiwat Aiemleuk;Thepchai Supnithi
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2024
  • Automated text summarization (ATS) systems rely on language resources as datasets. However, creating these datasets is a complex and labor-intensive task requiring linguists to extensively annotate the data. Consequently, certain public datasets for ATS, particularly in languages such as Thai, are not as readily available as those for the more popular languages. The primary objective of the ATS approach is to condense large volumes of text into shorter summaries, thereby reducing the time required to extract information from extensive textual data. Owing to the challenges involved in preparing language resources, publicly accessible datasets for Thai ATS are relatively scarce compared to those for widely used languages. The goal is to produce concise summaries and accelerate the information extraction process using vast amounts of textual input. This study introduced ThEconSum, an ATS architecture specifically designed for Thai language, using economy-related data. An evaluation of this research revealed the significant remaining tasks and limitations of the Thai language.