• Title/Summary/Keyword: testis shielding

Search Result 3, Processing Time 0.017 seconds

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

Evaluating the Efficiency of the Device in Shielding Scattered Radiation during Treatment of Carcinoma of the Penis (음경암의 방사선치료 시 자체 제작한 Device의 산란선 차폐 효과에 대한 유용성 평가)

  • Gim, Yang-Soo;Lee, Sun-Young;Lim, Suk-Gun;Gwak, Geun-Tak;Pak, Ju-Gyeong;Lee, Seung-Hoon;Hwang, Ho-In;Cha, Seok-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Purpose: We evaluated the device that was created for maintaining the patient's setup and protecting the testicles from scattered radiation during treatment of carcinoma of the penis. Materials and Methods: The phantom testicles were made of vaseline cotton gauze and the device consisted of 5 mm of acryl box and 4 mm of lead shielding. $3{\times}3\;cm^2$, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$, $7{\times}7\;cm^2$ field sizes were used for this study and measurement was made at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field for 10 times with lead shielding and without the shielding respectively. 200 cGy was delivered using 6 MV photons. Results: The scatted radiation without lead shielding at 4, 5, 6, 7, 8, 10 cm from the lower edge of the field were 14.8-4.7 cGy with $3{\times}3\;cm^2$, 15.7-5.2 cGy with $4{\times}4\;cm^2$, 17.6-5.5 cGy with $5{\times}5\;cm^2$, 19.9-6.6 cGy with $6{\times}6\;cm^2$, 22.2-7.6 cGy with $7{\times}7\;cm^2$ and the measured dose without lead shielding were 7.1-2.6 cGy with $3{\times}3\;cm^2$, 8.9-3.6 cGy with $4{\times}4\;cm^2$, 12.3-4.8 cGy with $5{\times}5\;cm^2$, 14.6-5.0 cGy with $6{\times}6\;cm^2$ and 21.1~6.4 cGy with $7{\times}7\;cm^2$. As shown above, the scatted radiation decreased after using lead shielding. Depending of the range of field sizes, the resulting difference between without shielding values and with shielding values were: 7.8-1.1 cGy at 4 cm, 5.1-1.2 cGy at 5 cm, 3.8-1.1 cGy at 6 cm, 3.4-1.7 cGy at 7 cm, 2.8-1.7 cGy at 8 cm, 2.4-2.5 cGy at 9 cm and 2.1-1.8 cGy at 10 cm. In the situation as described above, the range in values depending on the distance was 7.8-1.1 cGy with $3{\times}3\;cm^2$, 6.9-1.6 cGy with $4{\times}4\;cm^2$, 5.3-0.8 cGy with $5{\times}5\;cm^2$, 5.3-1.5 cGy with $6{\times}6\;cm^2$ and 1.1-1.8 cGy with $7{\times}7\;cm^2$. Conclusion: Using the device we created to shield the testicles from scattered radiation during treatment of carcinoma of the penis, we have found that scattered radiation to the testicles is decreased by the phantom testicles, and by increasing the distance between the testicles and penis.

  • PDF