• Title/Summary/Keyword: testicular cycle

Search Result 45, Processing Time 0.03 seconds

Histological Changes of Androgenic Gland According Reproductive Cycle in Macrobrachium nipponense (De Haan, 1849) (징거미새우, Macrobrachium nipponense 생식주기에 따른 Androgenic Gland의 조직학적 변화)

  • Kim Dae Hyun;Kang Jung Ha;Lee Jae Young;Jeong Jee Hyun;Kim Byung Ki;Han Chang Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.253-258
    • /
    • 2002
  • The androgenic gland secretes a hormone, androgenic gland hormone, which is believed to act on the differentiation of the primary, secondary, and behavioral sex characteristics in most malacostracan crustaceans. Based on the changes in gonado-somatic indexe and histological observation of testis and androgenic gland cell, testicular maturation and spermatogenesis of M. nipponense occurred early in summer (May to July), and generally spermatogenesis was absent in August. It could be, concluded that May to July is the period when adult males of this species are sexually active, and androgenic gland showed signs of increased secretory activity.

Expression of Cyclin D3 Transcripts in the Postmeiotic Male Germ Cells of the Mouse

  • Sun, Woong-Sun;Geum, Dong-Ho;Choi, Wan-Sung;Kim Kwon, Yun-Hee;Rhee, Kun-Soo;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.495-500
    • /
    • 1998
  • D-type G1 cyclins are known to be crucial for the progression of mitotic cell cycle in mammals. Although many studies have been performed to elucidate the roles of D-type cyclins, it is largely unknown whether D-type cyclins are directly involved in the regulation of meiotic germ cell development. In the present study, we examined the expression patterns of D-type cyclins (cyclin D1 and D3) during male germ cell development by northern blot and in situ Hybridization analyses. In the adult testes, we detected a 4.2 kb cyclin D1 mRNA and two different sizes (2.3 kb and 1.8 kb) of cyclinD3 mRNAs. The short form of the cyclin D3 transcript was testis-specific. Along with the testicular development, expression of cyclin D3 mRNA was increased whereas cyclin D1 mRNA was gradually decreased. in situ hybridization study also revealed that the expression of cyclin D3 was restricted to the postmeiotic germ cells. Furthermore, the 2.3 kb transcript was highly expressed in the round spermatids and decreased in the elongated spermatids/residual bodies, while the 1.8 kb transcript was expressed in elongated spermatids/residual bodies more abundantly. Sucrose-gradient separation of polysomal RNA fractions demonstrated that some portions of the 2.3 kb transcript are translationally active, while the 1.8 kb transcript is likely to be inactive. Taken together, the present data suggest a functional importance of cyclin D3 expression in the differentiated postmeiotic male germ cells.

  • PDF

Effect of Testicular Histopathology on Pregnancy Outcomes in Non-Obstructive Azoospermia (비폐쇄성 무정자증 환자에서 고환의 조직병리학적 진단에 따른 체외수정시술 결과의 비교)

  • Park, Chan-Woo;Seo, Ju-Tae;Park, Yong-Seog;Kim, Hye-Ok;Yang, Kwang-Moon;Kim, Jin-Young;Koong, Mi-Kyoung;Kang, Inn-Soo;Song, In-Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.293-301
    • /
    • 2008
  • Objective: To evaluate outcomes of patients with non-obstructive azoospermia (NOA) undergoing the testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection (ICSI) with different histopathologic subgroups. Method: A total of 122 embryo-transferred TESE/ICSI cycles were compared among NOA subgroups; Germ-cell aplasia (GA, 40 cycles), Maturation arrest (MA, 32 cycles) and severe hypospermatogenesis (S-HS, 50 cycles). Obstructive azoospermia (OA, 667 cycles) patients were served as a control. TESE/ICSI outcomes such as fertilization rate (FR), clinical pregnancy rate (CPR) and live birth rate (LBR) were evaluated. Results: The 2PN FR of embryo-transferred TESE/ICSI cycle was 58.1% in GA, 42.2% in MA and 48.0% in S-HS, which was significantly lower than that of OA (72.9 %, p<0.001). For ICSI-spermatozoa cycles, there were no significant differences in CPR (22.6%, 29.4% and 26.1%) and LBR (16.1%, 29.4% and 19.6%) among NOA subgroups. The CPR of ICSI-spermatid cycles was 0.0%, 9.1% and 0.0% without a live birth. For ICSI-spermatocyte cycles, no clinical pregnancies occurred in any group. Conclusion: There was no significant difference in the FR of embryo-transferred TESE/ICSI cycles among NOA subgroups. The FR among all NOA subgroups was significantly lower than that of OA. Testicular histopathology in NOA did not affect successful pregnancy if spermatozoa extraction from the testis is successful and embryo transfer is possible.

Reproductive Cycle of Venus Clam, Protothaca jedoensis(Bivalvia: Veneridae) in Korea (한국산 살조개, Protothaca jedoensis의 생식주기)

  • Kim, Jung;Yoon, Ho-Seop;Rha, Sung-Ju;Moon, Seong-Yong;Soh, Ho-Young;Choi, Kyu-Jung;Choi, Sang-Duk
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.245-255
    • /
    • 2002
  • In order to obtain the basic information for seedling production of venus clam, Protothaca jedoensis, the annual reproductive cycle was investigated mainly by histological observation from September 1998 to August 1999. P. jedoensis was dioecious. The gonads are located between the digestive diverticula and muscle tissue of the foot. The ovary was composed of a number of ovarian sacs, and the testis was composed of several testicular tubules. The condition index was reached its maximum (20.0) in February, and then decreased to 11.5 in June. In August, the value was the lowest (9.0) and then increased slowly. Minimum size for the sexual maturation of individuals were 38.4 mm in shell length. One the other hand, the size of mature oocytes was ranged to $50-60\mu{m}$ in diameter and testis-ova was observed in testis of the mature stage. The reproductive cycle of P. jedoensis could be classified into five successive stages: early active (December to February), late active (January to April), ripe (March to July), partially spawned (June to August) and spent/inactive (July to January) stages.

Gonad Structure and Reproductive Cycle of the Smallmouth Scorpionfish, Scorpaena miostoma (Teleostei: Scorpaenidae) (쭈굴감펭 (Scorpaena miosfoma)의 생식소 구조 및 생식주기)

  • LEE Jung Sick;KANG Ju-Chan;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.627-633
    • /
    • 1997
  • Gonad structure, germ cell development and reproductive cycle of the smallmouth scorpionfish, Scorpaena miostoma were investigated based on histological method. Samples were collected monthly in the vicinity of Suyoung Bay, Pusan, Korea from November 1995 to October 1996. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consists of numerous testicular cysts which contain numerous germ cells in same developmental stage. The ovary consists of several ovarian lamellae originated from ovarian outer membrane. Oogonia originated from the inner surface of the ovarian lamella protrude to the ovarian cavity in oocyte stage, and they are suspended by the egg stalk. Biological minimum size of female and male were 12.5cm in total length. Gonadosomatic index (GSI) of female (3.81) and male (0.23) were the highest in October. Reproductive cycle was classified into the following successive stages: in female, growing stage $(May\~August)$, maturation stage $(September\~October)$, ripe and spawning stage $(November\~December)$, recovery and resting stage $(January\~April)$, and in male, growing stage $(June\~August)$, maturation stage $(September\~October)$, ripe and spent stage $(November\~January)$ and recovery and resting stage $(February\~May)$.

  • PDF

Gonadal Development and Reproductive Cycle of Gomphina melanaegis (Bivalvia; Veneridae) (민들조개 (Gomphina melanaegis)의 생식소 발달과 생식주기)

  • LEE Jeong Yong;PARK Young Je;CHANG Young Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.198-203
    • /
    • 1999
  • Gonadal development and reproductive cycle off Gomphina melanaegis collected in the coastal waters of Chumunjin, Korea were investigated monthly from April 1996 to April 1997. G. melanaegis was dioecious, The gonads were located between the digestive diverticula and muscle tissues of the foot, The ovary was composed of a number of ovarian sacs, and the testis was composed of several testicular tubules. The flesh weight rate was reached the maximum in August ($23.0\%$), and then decreased to $19.8\%$ in September. In March, the value was reached the minimum ($17.8\%$) and then increased, The size of mature oocyte was ranged $50\~60\mu$m in diameter and had a germinal vesicle with a nucleolus. Mature oocyte contained a large number of yolk granules and lipid granules in its cytoplasm. The spermatozoon was consisted of a conical nucleus with acrosome, a middle piece containing four mitochondria and proximal and distal centrioles, and a flagellum, Sex ratio (male/female) and minimum size for sexual maturation of G. melanaegis were 0.79 and about 25 mm in shell length, respectively. The reproductive cycle could be classified into five succesive stages: multiplicative (December to March), growing (April and May), mature(June), sprawning (July and August), and degenerative and resting (September to November) stages.

  • PDF

Reproductive Cycle of the Goldeye Rockfish, Sebastes thompsoni (Teleostei: Scorpaenidae) (불볼락(Sebastes thompsoni)의 생식주기)

  • LEE Jung Sick;AN Cheul Min;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • Sexual maturation and reproductive cycle of the goldeye rockfish, Sebastes thompsoni were investigated under photomicroscopy. Samples were collected monthly in the coastal water of Samcheonpo ($34^{\circ}55'N$ ), Korea from November 1995 to October 1996, The ovary consists of several ovarian lamellae originated from ovarian outer membrane. Oogonia which are originated from the inner surface of the ovarian lamella protrude to the ovarian cavity in oocyte stage, and they ave suspended by the egg stalk. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consists of many testicular cysts which contain numerous germ cells in same developmental stage. Biological minimum size of female and male were 19.5 cm and 21.5 cm in total length, respectively. Gonadosomatic index (GSI) of female was the highest (9.56) in March and the lowest (0.15) in August. GSI of male was the highest (0.25) in February and the lowest (0.04) in July. Reproductive cycle was classified into the following successive stages: in female, growing (October and November), maturation ( $December\~February$), gestation (March), parturition and recovery ($April\~June$) and resting ($July\~September$), and in male, growing ($September\~November$), maturation ( December and January), ripe and copulation ( February and March) and degeneration and resting ($April\~August$).

  • PDF

GAMETOGENESIS AND REPRODUCTIVE CYCLE OF THE TOPSHELL, TURBO CORNUTUS SOLANDER (소라, Turbo cornutus의 생식세포형성과정 및 생식주기에 관한 조직학적 연구)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.125-134
    • /
    • 1980
  • The dovelopment of the gonads, gametogenesis and the reproductive cycle of the topshell, Turbo cornutus Solander, which is one of valuable food animals fom Korean waters were studied by photomicroscophy. The materials were monthly collected from Bangeojin, Jeongjari and Dangweol, all these places being located in the south-eastern part of Korea, for one year from March 1979 to February 1980. Topshell is dioecious and oviparous. Gonad is situated on the surface of liver, which lies posteriorly. The surface of ovary and testis is covered with a fibrous membrane, membrane of connective and muscular fibers and then an outermost layer of simple-columnar epithelial cells which are composed of cuboidal and columnar mucous gland cells. Primordial germ cells develop on the germinal epithelium of ovarian and testicular lobuli which are originated from the fibrous membrane and extend toward hepatic gland. Undifferentiated mesenchymal tissue and pigment granular cells are abundantly distributed between the growing oocytes and spermatocytes in the early development stages. With the further development of the ovary and testis these tissue and cells gradually disappear. Then the undifferentiated mesenchymal tissue and pigment granular cells are considered to be related to the growing of the oocytes and spermatocytes. Early multiplicating oogonium is ca. $10\mu$ in diameter and nucleushaving a central nucleolus is ra. $8\mu$. As the oocytea grow to ca. $50-60\mu$ by the increase of cytoplasm, the oocytes become look like bunches of grapes which are attached to ovarian lobuli. Mature eggs are ca. $180-210\mu$ in diameter and it is surrounded by a gelatinous membrane of ca. $10\mu$ in thickness. After spawning, undischarged ripe eggs and spermatozoa remain in the ovary and testis respectively for some time. Then they finally degenerate, and proliferation of new oogonia and spermatogonia occur along the germinal epithelia of newly developed ovarian and testicular lobuli. Reprocuctive cycle of Turbo cornutus could be classified into five successive stages: multiplicative, growing, maturer spent and recovery stages. Spawning occurs from August to November with Peak spawning from early September to late October.

  • PDF

Annual Reprodutive Cycle of the Jackknife Clams, Solen strictus and Solen gordonis (맛조개, Solen strictus와 붉은맛, Solen gordonis의 생식년주기)

  • CHUNG Ee-Yung;KIM Hyung-Bae;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.563-574
    • /
    • 1986
  • The structure of gonads, gametogenesis and reproductive cycle of the jackknife clams, Solen strictus and Solen gordonis were investigated mainly by histological observation. The first species used were monthly sampled at the coastal area of Dadaepo, Pusan, Korea and Naechodo, Kunsan, Korea for one year from February 1982 to January 1983. The second species were monthly sampled at the sand beach of Dadaepo, Pusan, Korea, from February 1982 to January 1983. Sexualities of Solen strictus and Solen gordonis are dioecious, and these species are oviparous. The gonads are irregularly arranged from the subregion of mid-intestinal gland in visceral cavity to reticular connective tissue of foot. The ovary was composed of a number of small ovarian sacs and the testis was composed of several testicular lobuli which from the tubular structure. Early multiplicating oogonium was about $10{\mu}m$ in diamater. Nucleus and nucleolus, at that time, were distinct in appearance. Each of the early growing oocytes made an egg-stalk, connected to the germinal epithelium of the ovarian sac. A great number of undifferentiated mesenchymal tissue and eosinophilic granular cells are abundantly distributed in the ovarian sacs in the early development stages. With the further development of gonad, these tissue and cells gradually disappeared. Then the undifferentiated mesenchymal tissue and eosinophilic granular cells function as nutritive cells in the formation and development of the early stage germ cells. Mature oocytes were free in the lumen of ovarian sacs and gradually become round or oval. Ripe oocyte was about 80 to $90{\mu}m$ in diameter. With the further development of testis, each of the testicular lobuli formed stratified layers composed of spermatogonia, spermatocytes, spermatids and spermatozoa in groups on the germinal epithelium. After spawning, the gonad gradually degenerated, and disorganized completely. Then new differentiated tissues were rearranged next year. The annual reproductive cycle of those species could be classified into five stages; multiplicative, growing, mature, spent, degenerative and resting stage. It seems that the spawning season is closely related to the water temperature, and the spawning of Solen strictus occurs from June to July at above $20^{\circ}C$ in water temperature. The peak spawning season appeared in June at Dadaepo and in July at Kunsan, The spawning of Solen gordonis occurs from May to June with the peak spawning season in June. Percentages of the first maturity in female of Solen strictus ranging from 5.1-6.0 cm and 7.1-8.0 cm in shell length were $50\%$ and $100\%$, respectively.

  • PDF

Effect of rc Mutation on Semen Characteristics, Spermatogenic Tissues and Testosterone Profile in Blind Rhode Island Red Cockerels

  • Arshami, J.;Cheng, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.701-705
    • /
    • 2007
  • Seven rc mutant and seven normal male birds (Rhode Island Red suie, RIR) were used in this study to determine the effects of rc mutation on semen characteristics, testosterone profile and spermatogenic tissues. All birds were randomly selected at week 12 of age and housed in individual cages and were fed and watered ad libitum. The birds were exposed to a 14L:10D light cycle during experiment. Semen were collected at weeks 22 to 23 from each bird twice a week and evaluated for semen volume (SV), sperm concentration (SC), total sperm count (TSC), percent of sperm motility (%SM), dead sperm (%DS), and sperm metabolic activity (SMA). To determine the testosterone concentration (TC) in plasma, blood was collected at weeks 12, 16 and 18. Testicular tissue were collected, processed and evaluated for semineferous tubule diameter (STD), round spermatid number (RSN), percent elongated sperm (%ES) and semineferous tubules length (STL). Body weight (BW), comb weight (CW) and testes weight (TW) were weighted at the end of experiment (week 23). The SV, TSC and %SM were significantly higher in normal birds but the %DS was higher in blind birds (p<0.05). The SC did not differ significantly between the two groups but its value was higher in normal birds. The sperm metabolic activity in the first h of collection did not differ significantly between the two groups but after 24 h, the level of SMA in normal group was significantly higher (p<0.05). The level of TC did not differ significantly between the two genotype groups but normal birds had higher TC in all collections except the last one. The STD, RSN, %ES and STL in normal birds were higher when compared to blind birds but the differences were insignificant except for ES percent. The BW, CW and TW between the two groups did not differ significantly but the weights were higher in normal group compared to blind birds. Statistical analysis of semen characteristics, testosterone profile and histological factors were indicated detrimental effects of rc mutation in prepubertal RIR blind male birds due to lack of light.