• Title/Summary/Keyword: test load increasing ratio

Search Result 127, Processing Time 0.023 seconds

The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance (흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Lee, Jin-A;Lee, Wha-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1050-1056
    • /
    • 2010
  • Diesel engines introduce only air into the cylinder, and the air is high lycompressed. Fuel is directly injected into the combustion chamber in high temperature and pressure. Therefore diesel engines have high thermal efficiency because of the high compression ratio, while having high level of particulate matter and nitrogen oxide emissions because of the direct fuel injection. Many technologies have been developed to reduce particulate matter and nitrogen oxide emissions from diesel engines. One of the technologies is hydrogen fuel introduced into the combustion chamber with diesel fuel. In this thesis tiny amount of hydrogen is supplied into the combustion chamber in order to enhance the combustion performance. The engine, in which hydrogen is introduced, is tested. There are 20 test conditions given as 5 torque values of 100%, 75%, 50%, 25%, 0%, and 4 engine speeds of 700rpm, 1000rpm, 1500rpm and 2000rpm for the two cases with or without hydrogen addition. Maximum torques and Idle torques at each engine speed are measured, then the torque values are divided into 4 levels with 25% increasing step. The result shows that the fuel consumption, smoke, CO are reduced while the NOx emission is slightly increased, and the hydrogen addition has not a great effect on the performance at low loads but a great effect at a maximum load.

An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute (십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구)

  • Lee, Chang-Gu;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.628-633
    • /
    • 2008
  • Cruciform parachute has advantage in manufacture and expanse compare with circular parachute. But it has disadvantage in stability. Wind tunnel test were conducted to investigate the effects of reefing-line on the cruciform parachutes with the purpose of finding aerodynamics characteristics of the parachute such as drag coefficient, normal force coefficient. Aerodynamics characteristics are measured accurately with 6-components pyramidal balance and load cells which were installed in the fixed-body. Four different models were tested and the test results were compared with each other. The aerodynamics characteristics were changed with reefing-line length. Separation edge was developed due to reefing-line also it made increasing of the stability. The cruciform parachute which improve stability is supposed to be used in variety purpose.

Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs (쌍축 컨테이너선의 조종성능 특성 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Kim, Hyoung-Tae;Yu, Byeong-Seok;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Wear Resistance of Crosslinked Ultra-high Molecular Weight Polyethylene (가교된 초고분자량 폴리에틸렌의 내마모성)

  • Im, Chae-Ik;Lee, Gwi-Jong;Jo, Jae-Yeong;Choe, Jae-Bong;Choe, Gwi-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • Ultra-high molecular weight polyethylene (UHMWPE) was crosslinked in the melt state to enhance wear resistance, Dicumyl peroxide (DCP) and triallyl cyanurate (TAC) was used as a crosslinking agent and a promoter, respectively. With increasing amount of DCP and TAC used, gel content of crosslinked UHMWPE (XUMPE) increased, while the melting temperature, crystallizaiton temperature, crystallinity, and tensile properties decreased. The results of pin-on-disk wear test and ball-on-disk test with small applied load showed reduced wear volumes of XUMPE from that of the unmodified UHMWPE. As the wear mechanism effected in the experimental condition of this study was thought to be deformation rather than adhesion or fatigue, a new parameter, the ratio of maximum contact stress to yield stress, was proposed to correlate well with observed wear resistance. In ball-on-disk wear test with larger applied load, XUMPE showed higher wear volumes than that of the unmodified UHMWPE which were accompanied with increased friction coefficients and surface roughness of the wear tracks. When contact stress was well above yield stress, the failure of XUMPE, as well as deformation, was thought to be much accelerated.

  • PDF

The Investigation on the Behavior of Beam-Column Joint with High and Low Strength Concerte (고강도와 보통강도 콘크리트를 사용한 보-기둥 접합부의 구조적 거동)

  • 신성우;이광수;문정일;안종문;박희민;장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 1992
  • AC] 318-H9 Recommended that when the specified compressive strength of concrete in a column is greater than 1. 4 times that specified for a floor system, top surface of the colurrm concrete shall extend 2ftU;OOrrun) into the slab from the face of colUlml to avoid unexpected brittle failure. The purpose of this investigation is to suggest the basic information for the structural safety, The major variables are com preSSlve strength of concrete, shear confinement ratio, and loading types. The test results showed that the load capaCIty of speCImen subjected to monotOI1lC loading had more than that of specimen subjected to one way cyclic loading. The failure modes of specimens under cyclic loading were concentrated at 5-20cm apart region from beam-column joint face and ductility index are increased with increasing of shear confinement ratio. Keywords: ACI 318-89, High and Low Strength Concrete, Beam-Column Joint, Shear Confinement Ratio, Loading Type, Ductility Index, Extension Distance.

Bond Behavior of GFRP Rebars Embedded in Concrete Under Cyclic Loading (반복하중을 받는 GFRP 보강근의 부착특성)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.101-104
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Fiber Reinforced Polymer (FRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of FRP. However, there remain various aspects of FRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between FRP and concrete. In this study, the bond-behavior of FRP bars in concrete is investigated via the pullout test with three varying parameters: surface condition of FRP bars, concrete compression strength, and cyclic loading patterns. As a result of experiment, the bond strength of GFRP increased with the concrete compression strength increasing and decreased with applying cyclic load.

  • PDF

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.