• Title/Summary/Keyword: test bench

Search Result 393, Processing Time 0.024 seconds

Blast Coefficient for Bench Blasting (벤치발파 설계에서 발파계수 설정에 관한 연구)

  • Kim, Hee-Do;Kim, Jung-Kyu;Ko, Young-Hun;Noh, You-Song;Shin, Myeong-Jin;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In this study, the domestic bench blasting sites were researched to set the blast coefficient C according to the type of rock and type of industry. With the use of the experimental data on the representative industrial explosives and the data of the manufacturers'data on explosives, powder coefficient e was set up. The blast coefficient C was 0.21~0.30 when the average value for 5 representative kinds of rocks including granite was searched. The blast coefficient C for quarrying, mining and construction sites were 0.22, 0.13 and 0.26 respectively. On the other hand, powder coefficient e was obtained in four elements such as reactive energy, ballistic mortar test, VOD, Langefors'strength per unit weight. e value for emulsion which is one of the representative explosives was found to be 1 while those of high performance emulsion and ANFO were found to be 0.9 and 1, respectively.

Performance Characteristics of an Electronically Controlled EGR Valve for Diesel Engines (디젤엔진용 전자식 EGR 밸브의 성능 특성)

  • Chung, Jin-Eun;Chin, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.185-188
    • /
    • 2007
  • Lately, the modulated EGR system that includes EGR valve and EGR cooler is being installed in diesel engines fur the purpose of the simultaneous reduction of NOx and PM. In this study. we designed and constructed a test bench for the performance evaluation of the modulated EGR system, and tested an electronically controlled EGR valve for 2.0 L diesel engines. The performance of the EGR valve was evaluated in terms of the valve lift behavior. the valve opening/closing response, and the mass flow rate through the valve. The valve lift with respect to the duty ratio of PWM signal was non-linear, and followed a different path fur valve opening and closing, that is, hysteresis. The valve opening response was concluded satisfactory falling within the usual standard response time. For the duty ratio of 40 to 60%, the mass flow rate through the valve was observed to depend on the pressure difference across the valve as well as the duty ratio, while it solely depended on the pressure difference fur the duty ratio above 60%.

  • PDF

BMT-Model Based Evaluation of Power Consumption of Mobile Context-Aware Application (BMT 모델 기반 모바일 상황인지 어플리케이션의 전력 소비 평가)

  • Jeon, Jaehong;Baek, Dusan;Kim, Kyung-Ah;Lee, Jung-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.411-418
    • /
    • 2016
  • Context-aware application has a lot of power consumption because it creates context by using a number of smartphone's sensors. Furthermore, only few kinds of researches have been conducted that provide information for the evaluation result of power consumption in the aspect of applications. In addition, evaluation of power consumption do not consider user's usage pattern or provide only total amount of power consumption, and inform developers power consumption of sensors undistinguishable. It makes developers hard to develop a power consumption-considered application. If developers could get information for power consumption of context-aware application in detail, a development of power-considered context-aware applications would be possible. Consequently, this paper proposes a BMT(Bench Mark Test) model which is able to inform developers useful evaluation criteria and result about power consumption of smartphone's components and sensors with usage pattern considered.

Assessment of Performance of Motor System for City Bus (노선버스용 구동모터 시스템의 성능평가)

  • Lee, Yoon-Ki;Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • Recently, research and development of a hybrid system for passenger cars as well as for heavy-duty vehicles has become more intensive. An electric powertrain system using an electric motor can replace conventional gasoline and diesel engines. The electric motor has a higher efficiency, better acceleration performance, and is more comfortable than conventional powertrain systems; however, new methods for assessing power performance and energy convergence efficiency have to be investigated because the characteristics of an electric motor are entirely different from those of an internal combustion engine (ICE). In this study, an experiment was carried out on a motor (PMSM: Permanent Magnet Synchronous Motor) test bench. One simple driving mode and four other driving modes identified from real-world driving data of a city bus were selected to perform the experiment on the motor test bench. Then, methods for assessing the acceleration performance, energy convergence efficiency, regenerative effect, etc., were investigated. It was found that the energy efficiency of PMSM was about 90% and that 40% of demand energy was regenerated.

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

Performance of R502 Alternative Refrigerants for Low Temperature Applications (저온용 R502 대체냉매의 성능 평가)

  • Ha Jong-Chul;Hwang Ji-Hwan;Baek In-Chul;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.883-890
    • /
    • 2005
  • In this study, 2 pure hydrocarbon refrigerants of R1270 (Propylene) and R290 (Propane) and 3 binary mixtures composed of R1270, R29O and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502 used in most of the low temperature applications. The test bench provided 3\sim3.5$ kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of -28 and $45^{\circ}C$ in the evaporator and condenser, respectively. Test results showed that all refrigerants tested had $9.6\sim18.7\%$ higher capacity and $17.1\sim27.3\%$ higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502 while those of all other refrigerants were $23.7\sim27.9\%$ lower than that of R502. For all alternative refrigerants, the amount of charge was reduced up to $60\%$ as compared to R502. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties.

Performance of Alternative Refrigerants for R12 and R134a in Automobile Air-Conditioners (자동차 공조기용 R12 및 R134a 대체 냉매의 성능평가)

  • Baek, In-Cheol;Park, Ki-Jung;Shim, Yun-Bo;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.403-410
    • /
    • 2007
  • In this study, natural refrigerants and their mixtures that can supplement and replace R12 and R134a in automobile air-conditioners are studied. R134a is currently used as the refrigerant in new motor vehicle air conditioners, replacing the ozone depleting refrigerant R12. Although R134a has no ozone depletion potential, it has a relatively large global warming potential, approximately 1300 times that of $CO_2$ over a 100 year time horizon. For this reason, performance of natural refrigerants and their mixtures containing R152a, RE170 (Dimethylether, DME) and R600a (Isobutane) are measured under 2 different temperature conditions. They were tested in a refrigerating bench tester with an open type compressor. The test bench provided about 4 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. Test results show that the coefficient of performance (COP) of these refrigerants is up to 21.55% higher than that of R12 in all temperature conditions. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for automobile air-conditioners.

Performance of R290 and R1270 as Alternative Refrigerants of R22 According to Temperature Variations of Evaporator and Condenser (증발기와 응축기 온도변화에 따른 R22 대체냉매 R290 및 R1270의 성능평가)

  • Baek In-Cheol;Park Ki-Jung;Shim Yun-Bo;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.761-767
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons R290 and R1270 was measured in an attempt to substitute R22 under 3 different temperature conditions. They were tested in a refrigerating bench tester with a hermetic rotary compressor. The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7/45^{\circ}C$ and $-7/41^{\circ}C$ and $-21/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.

Performance Evaluation of R22 Alternative Refrigerants According to Temperature Variations of Evaporator and Condenser (증발기와 응축기 온도변화에 따른 R22 대체냉매의 성능평가)

  • Baek, In-Cheol;Shim, Yun-Bo;Jung, Dong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.58-63
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 3 mixtures was measured in an attempt to substitute R22 under 3 different temperature conditions. The mixtures were composed of R1270(propylene), R290(propane) and R152a. They were tested in a refrigerating bench tester with a hermetic rotary compressor The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7^{\circ}C/45^{\circ}C$ and $-7^{\circ}C/41^{\circ}C$ and $-21^{\circ}C/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.

  • PDF

Analysis of Diesel Nano-particle Characteristics for Different Vehicle Test Mode in Diesel Passenger Vehicle (디젤 승용차량 시험모드별 극미세입자 배출 특성 해석)

  • Lee, Jin-Wook;Jung, Min-Won;Jeong, Young-Il;Cha, Kyong-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.114-120
    • /
    • 2008
  • Recently, the nano-PM's number concentration emitted by diesel internal combustion engine has focused on attention because this particulate matters are suspected being hazardous of human health. In this study, The nano-PM mass and size of diesel passenger vehicles were measured on chassis dynamometer test bench. The particulate matters(PM) emissions of these vehicles were investigated by number concentration too. A condensation particle counter(CPC) system was applied to measure the particle number and size concentration of diesel exhaust particles at the end of dilution tunnel along the NEDC(ECE15+EUDC) and CVS-75 vehicle test mode. As the research result, the characteristic of vehicle test mode on the diesel nano-particle number and size distribution was investigated in this study.