• Title/Summary/Keyword: test beam

Search Result 2,911, Processing Time 0.027 seconds

Shear Strength Equation of Concrete Wide Beam Shear Reinforced With Steel Plate Considering Transverse Spacing and Support Width (전단 보강 간격과 지지부 조건을 고려한 유공형 강판으로 전단 보강된 콘크리트 넓은 보의 전단 강도 산정식)

  • Kim, Min Sook;Jeong, Eun Ho;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.

Flexural Tests on Post-Tensioned Segmental Composite Beam (세그멘탈 합성보의 휨 실험)

  • 김인규;설동재;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.487-492
    • /
    • 2002
  • The interior portion of Gerber's beam are constructed with post-tensioned segmental composite beams in this study. A precast concrete member which is larger than the limits of domestic transportation regulation in weight, length, and volume is divided into three parts, transported separately, and erected with a composite member by post-tensioning in site. Static flexural loading tests are performed on Gerber's type frames which are consisted with 2.5m overhangs and 5m interior beams composited from three pieces. The connection of overhang to interior composite beam and beam to beam, and flexural performance of interior portion of Gerber's beam are examined thoroughly. All of the tests are ended with a compression failure of the interior composite beams over the design strength of homogeneous beams. The brittle connection failures or tensile failures with the failure of lower strand was not observed in any test frames.

  • PDF

Finite Element Analysis of Exterior R.C. Beam-Column Joints Containing Headed Bars utilized for Enhanced Seismic Performance (Headed bar를 사용한 외부 철근 콘크리트 보-기둥 접합부의 강화된 내진 성능에 대한 유한요소해석)

  • Bang, Suk;Lee, Joo-Ha;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.506-509
    • /
    • 2004
  • This paper proposes Headed bar as reinforcement of beam-column joint, and proves seismic performance and reduction of reinforcement congestion. In these case, the use of Headed bars have obvious advantages. The greatest benefit of using Headed bars is not only improved structural performance of beam-column joints, but also the ease of fabrication, construction, and placement. Three-dimensional finite element analysis model is compared with test program which was fulfilled by the proposed model with Headed bar. Also, the plastic hinge region is relocated to the center of the longitudinal beam length according to the strong column-weak beam design philosophy, so Headed bar is used as the joint reinforcement. Therefore, this paper presents results of a computer analysis of a practical solution for relocating potential beam plastic hinge regions by the placing of straight - Headed bar.

  • PDF

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Effect of prestressing force on natural frequency of a prestressed concrete beam (PSC보의 긴장력이 고유진동수에 미치는 영향)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.124-137
    • /
    • 2009
  • The research on the effect of the prestressing force on the frequency of PSC(Prestressed Concrete beam) has been conducted theoretically and experimentally, and a few theory has been presented. However, the presented theories show no agreement in predicting the effect of the prestressing force. In this paper, the theories on the effect of the prestressing force on the frequency of PSC beam are presented and evaluated using the experimental result. To obtain the experimental result, two PSC beam specimens were manufactured, and the modal test and analysis were performed. The modal analysis results revealed that the prestressing force increased the natural frequency of the PSC beam. Comparing predicted results using existing theories show that Kim's model, which substitutes the prestressing tendon with the equivalent beam, gives the best prediction result.

  • PDF

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Shaping of piezoelectric polyvinylidene fluoride polymer film for tip position sensing of a cantilever beam

  • Lee, Young-Sup
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2005
  • This paper describes a novel tip position sensor made of a triangularly shaped piezoelectric PVDF (polyvinylidene fluoride) film for a cantilever beam. Due to the boundary condition of the cantilever beam and the spatial sensitivity function of the sensor, the charge output of the sensor is proportional to the tip position of the beam. Experimental results with the PVDF sensor were compared with those using two commercially available position sensors: an inductive sensor and an accelerometer. The resonance frequencies of the test beam, measured using the PVDF sensor, matched well with those measured with the two commercial sensors and the PVDF sensor also showed good coherence over wide frequency range, whereas the inductive sensor became poor above a certain frequency.