• Title/Summary/Keyword: terrain change

Search Result 206, Processing Time 0.024 seconds

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

A Study on the Improvement of Guideline in Digital Forest Type Map (수치임상도 작업매뉴얼의 개선방안에 관한 연구)

  • PARK, Jeong-Mook;DO, Mi-Ryung;SIM, Woo-Dam;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.168-182
    • /
    • 2019
  • The objectives of this study were to examine the production processes and methods of "Forest Type Map Actualization Production (Database (DB) Construction Work Manual)" (Work Manual) identify issues associated with the production processes and methods, and suggest solutions for them by applying evaluation items to a 1:5k digital forest type map. The evaluation items applied to a forest type map were divided into zoning and attributes, and the issues associated with the production processes and methods of Work Manual were derived through analyzing the characteristics of the stand structure and fragmentation by administrative districts. Korea is divided into five divisions, where one is set as the area changed naturally and the other four areas set as the area changed artificially. The area changed naturally has been updated every five years, and those changed artificially have been updated annually. The fragmentation of South Korea was analyzed in order to examine the consistency of the DB established for each region. The results showed that, in South Korea, the number of patches increased and the mean patch size decreased. As a result, the degree of fragmentation and the complexity of shapes increased. The degree of fragmentation and the complexity of shapes decreased in four regions out of 17 regions (metropolitan cities and provinces). The results indicated that there were spatial variations. The "Forest Classification" defines the minimum area of a zoning as 0.1ha. This study examined the criteria for the minimum area of a zoning by estimating the divided object (polygon unit) in a forest type map. The results of this study revealed that approximately 26% of objects were smaller than the minimum area of a zoning. The results implied that it would be necessary to establish the definition and the regeneration interval of "Areas Changed Artificially and Areas Changed Naturally", and improve the standard for the minimum area of a zoning. Among the attributes of Work Manual, "Species Change" item classifies terrain features into 52 types, and 43 types of them belong to stocking land. This study examined distribution ratios by extracting species information from the forest type map. It was found that each of 23 species, approximately 53% of species, occupied less than 0.1% of Forested land. The top three species were pine and other species. Although undergrowth on unstocked forest land are classified in the terrain feature system, their definition and classification criteria are not established in the "Forest Classification" item. Therefore, it will be needed to reestablish the terrain feature system and set the definitions of undergrowth.

Vertical Profiles of CO2 Concentrations and CO2 Storage in Temperate Forest in Korea (한국 활엽수림의 이산화탄소 농도의 연직구조와 저류항)

  • Thakuri, Bindu Malla;Kang, Minseok;Chun, Jung Hwa;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • Micrometeorological fluxes measured over a tall forest in a complex terrain are difficult to interpret. $CO_2$ storage often makes significant contributions to net ecosystem exchange of $CO_2$ (NEE) in early morning and during nighttime due to calm and stable conditions. We measured the above-canopy $CO_2$ flux along with its concentration profiles at eight levels within and above the canopy to evaluate $CO_2$ storage term. Our question is whether or not the $CO_2$ storage term can be estimated accurately from a single level measurement of $CO_2$ concentration in a complex terrain. Our objectives are (1) to document vertical profiles of $CO_2$ concentration and (2) to compare the diurnal and seasonal variations of $CO_2$ storages estimated from single and multi-level $CO_2$ concentration data. Seasonally averaged Diurnal variations of $CO_2$ concentration ranged from 398 to 455 ppm near the forest floor at 0.1 m whereas they ranged from 364 to 395 ppm at 40 m in the atmosphere. The diurnal variation of vertical profiles of $CO_2$ concentration shows very interesting features with season. At all eight levels, diurnal variation of $CO_2$ concentration showed little change in winter. In spring, the diurnal variations of $CO_2$ concentration at 8 levels showed three distinct groups of layers with height: the first layer: 0.1m (near surface), second layer: 1.0 m and 4.0m (below canopy) and the third layer: 7.4m to 40.7 m (near canopy and above). In summer, these three groups of layers were further separated with larger variations whereas such distinction became smaller in fall. The diurnal variation of $CO_2$ concentration in the first three layers near surface always showed higher concentration with larger variability. Typically, $CO_2$ concentration showed peaks in early morning and in the evening. After the evening peak, $CO_2$ concentration gradually increased except for those near the surface (i.e., 0.1, 1.0 and 4.0 m) where the concentrations actually decreased. We suspect that this could be attributed to the drainage flow of $CO_2$ along the hill slope from the headwater to downstream, which is not taken into account for net ecosystem $CO_2$ exchange. In comparison to the results of other studies, the distinct and different vertical structures of $CO_2$ concentrations observed at our site may be due to complex terrain and weak turbulent mixing under calm conditions at the site. The annual mean of diurnal variation of $CO_2$ storage flux from single level ranged from -0.6 to $0.9{\mu}mol\;m^{-2}s^{-1}$ and from multi-level from -1.2 to $1.0{\mu}\;{\mu}mol\;m^{-2}s^{-1}$. When compared against the results from the multi-level concentrations, the storage flux estimated from a single-level concentration was generally adequate except for specific hours near sunrise and sunset. Further details and their implication will be discussed in the presentation.

  • PDF

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

Analyzed Change of Soil Characteristics by Rainfall and Vegetation (강우 및 식생에 의한 토질특성 변화 분석)

  • Lee, Moon-Se;Kim, Kyeong-Su;Song, Young-Suk;Ryu, Je-Cheon
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • In this study, some changes of soil characteristics in a field were analyzed to investigate the effect of heavy rainfall during rainy season. The heavy rainfalls were often induced geohazards like landslides. To do this, the reaching rainfall in the ground surface was investigated according to a condition of vegetation, and the change of soil characteristics induced by infiltrating rainfall was analyzed. The study site is a natural terrain located in Daedeok Science Complex. This site has same geology and soil condition whereas it has different vegetable condition. The rainfall records during the rainy season of 2006 and 2007 were selected. The rainfall records are based on the measuring date from Daejeon Regional Meteorological Administration adjacent to the study site. Also, the rainfall records according to the condition of vegetation were measured using rainfall measuring device made by ourselves. The soil tests were carried out about soil specimen sampled before and after rainfall, and then the change of soil characteristics related to rainfall and vegetation were analyzed. As the result, the density of vegetation was influenced by reaching rainfall quantity in the ground surface, and its influence intensity was decreased with rainfall intensity and rainfall duration. Also, it shows that degree of saturations, water contents, liquidities and shear resistances are directly influenced by heavy rainfalls.

A Study on Correlation between RUSLE and Estuary in Nakdong River Watershed (낙동강 유역의 토양유실량과 하구지형의 상관성 분석)

  • Hwang, Chang-Su;Kim, Kyung-Tag;Oh, Che-Young;Jin, Cheong-Gil;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.3-10
    • /
    • 2010
  • The development of various spatial information and GIS has led to the research on interpretation of natural phenomena and correlational studies. This study is aimed to analyze the correlation between RUSLE(Revised Universal Soil Loss Equation) around Nakdong River area during the period of 1955 to 2005 and the amount of area change in the islets at the estuary terrain calculated in the study "Change Detection at the Nakdong Estuary Delta using Satellite Image and GIS". For the calculation of RUSLE, The 'Revised-USLE' model, a modified USLE model commonly used in Korea was used. For the rainfall erosion factor to calculate and compare the area of islets, the actual observation data for one year before the observation of satellite image from all observatories across Korea was used. The correlation coefficient between RUSLE and area change of islets was 0.57 for Jinwoo Islet; 0.7 for Sinja Islet; 0.87 for Doyodeung. This results showed that there was a great influence from Doyodeung where the main water way of Nakdong River runs. This study showed that the study using USLE for various fields and through identifying the characteristics of each factor is useful to understand natural phenomenon in practice.

Change for Engineering Properties of Top Soils in the Wildfire Area (산불발생지역에서 상부토층의 공학적 특성 변화)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Kyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.225-233
    • /
    • 2007
  • The engineering properties of surface soils in natural terrain are changed due to wildfire. This change of engineering properties induced by wildfire is related to landslides occurrence. To investigate the change of soil properties caused by wildfire, the various soil tests are performed. The soil samples are obtained from the recently burned slopes of Yangyang area, Kangwon Province. The soil samples obtained from the burned slopes are classified into three types depending on the burning grade: the perfect burning grade, the intermediate burning grade, the non-burning grade. As the result of tests, the specific gravity and the dry unit weight of soils obtained from perfect and alternative burning grades are less than those of soils obtained from non-burning grade. It judges that an electronic force, ionic components and of soils are changed and organic matters in soils are burned by wildfire. The permeability of soil obtained from alternative burning grade is the lowest and that of soil obtained from perfect burning grade is the highest. The water-repellent layer is formed on soil surface by wildfire. The water-repellent layer is existed at the area of alternative turning grade, while the layer is not existed at the area of perfect burning grade. The water-repellent layer is collapsed in high temperature more than about $400^{\circ}C$.

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.

A Study on the Flow Changes around Building Construction Area Using a GIS Data (GIS 자료를 활용한 신축 건물 주변 지역의 흐름 변화 연구)

  • Mun, Da-Som;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.879-891
    • /
    • 2018
  • In this study, the effects of urban redevelopment and building construction on the change of the detailed flows around the Pukyong National University (PKNU) campus located in the building-congested area was investigated using a CFD (computational fluid dynamics) model and GIS (geographic information system). For the analysis of the detailed flows before and after the constructions of the buildings around and within the campus, numerical simulations for the 16 inflow directions were performed before and after the construction. We used, as reference wind speeds at the inflow boundaries, the averaged wind speeds observed at the Gwangan light beacon (962) where there is no surrounding obstacle (i.e., building and terrain) acting as friction. We analyzed the area fractions in which wind speeds at z = 2.5 m changed after the construction for 16 inflow directions. The area fractions were relatively large in the east-south-easterly and southerly cases, because of the high-rise buildings constructed at the east and the apartment complex and the Engineering buildings constructed at the south of the PKNU campus. In the case of the easterly of which frequency is highest among the wind directions observed at the Daeyeon AWS (AWS 942) located inside the PKNU campus, the wind-speed change was not significant even after the constructions. It is shown that the building construction has affected the detailed flows around as well as even in the far downwind region of the constructed buildings. Also, it is shown that the GIS and CFD model are useful for analyzing the detailed flows in planning the urban redevelopment and/or building construction.

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.