• Title/Summary/Keyword: ternary system $K_2O-MgO-Al_2O_3$

Search Result 6, Processing Time 0.022 seconds

The Study of $K_2O-MgO-Al_2O_3-SiO_2-MgF_2$ System in Fluro-phlogopite Synthesis. (불소운모 합성에 따른 $K_2O-MgO-Al_2O_3-SiO_2-MgF_2$계의 연구)

  • 송경근;오근호;김대웅
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 1983
  • An attempt was made to derive a possible synthetic mechanism of Fluoro-phlogopite (Mica, 4Mg.$Al_2O_3$.$6SiO_2$.$K_2O$.$2MgF_2$) The pevention of fluorine vaporization turned out to be the key in the synthesis of Mica in question.l Consequently the quinary system of Mica was seperately synthesized ; frist 4MgO.$Al_2O_3-6SiO_2$(ternary system) was sintered at 135$0^{\circ}C$ and $K_2O$ and $MgF_2$ were added and second 4MgO.$Al_2O_3-6SiO_2$.$K_2O$ (quarternary system) was heat-treated at 135$0^{\circ}C$ and $MgF_2$ was added. The ternary system resulted in Proto-enstatite Cordierite and Spinel phases while Forsterite and Leucite were shown in the quarternay system . In both methods Fluoro-phlogopite was systhesized but the solid state reactions to form Mica from the ternary system and the quarternary system were different. High temperature reactions in the formation of Mica were investigated employing XRD, DTA and SEM The study of the synthesis of Mica indirectly suggested a method of phase analysis of quinary system(MgO-$Al_2O_3-SiO_2-K_2O-MgF_2$) and quarternary system(MgO-$Al_2O_3-SiO_2-K_2O-MgF_2$) at various temperatures.

  • PDF

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

THE ELECTROMAGNETIC PROPERTIES OF Mg-Mn FERRITES

  • Lee, D.Y.;Cho, S.I.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.552-555
    • /
    • 1995
  • The magnetic properties of Mg-Mn ferrites were investigated in the composition range of $Mg_{a}Mn_{b}Fe_{c}O_{4\pm\delta}$ (a+b+c=3) with the addition of $Al_{2}O_{3}$. In $MgO-MnO-Fe_{2}O_{3}$ ternary system, the spinel single phase existed within the composition range of MgO-50 mol%, MnO-70 mol% and $Fe_{2}O_{3}-60\;mol%$. The saturation magnetic flux density increased with the increase of $Fe_{2}O_{3}$ content and showed the maximum at the stoichiometric composition of $(Mg,Mn)Fe_{2}O_{4}$. In $Mg_{x}Mn_{1-x}Fe_{2}O_{4}(x=0.2~0.8)$ system, the saturation magnetic flux density showed the maximum at $Mg_{0.2}Mn_{0.8}Fe_{2}O_{4}$. The addition of $Al_{2}O_{3}$ resulted in the decrease of saturation magnetic flux density but increased the electrical resistivity.

  • PDF

Effect of Phase Stabilizers on the Phase Formation and Sintering Density of $Na^+$-Beta-Alumina Solid Electrolyte (상 안정화제가 $Na^+$-Beta-Alumina 고체 전해질의 상 형성 및 소결밀도에 미치는 영향)

  • Lee, Ki-Moon;Lee, Sung-Tae;Lee, Dae-Han;Lee, Sang-Min;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.534-538
    • /
    • 2012
  • $Na^+$-beta-alumina solid electrolyte was synthesized by solid state reaction using $Li_2O$ and MgO as a phase stabilizer, and the effect of stabilizers on the phase formation and sintering density was investigated. In order to determine the phase fraction according to the synthesizing temperature, the molar ratio of [$Na_2O$] : [$Al_2O_3$] was fixed at 1 : 5, and calcination was conducted at temperatures between $1200{\sim}1500^{\circ}C$ for 2 h. In the $Li_2O$-$Na_2O$-$Al_2O_3$ ternary system, ${\beta}^{{\prime}{\prime}}$-alumina phase fraction considerably increased by the secondary phase transition at $1500^{\circ}C$, whereas it maintained similarly in the MgO-$Na_2O$-$Al_2O_3$ system. Additionally, the disc-type specimens of $Na^+$-beta-alumina were sintered at the temperature between $1550{\sim}1650^{\circ}C$ for 30 min, and relative sintering densities, phase changes, and microstructures were analyzed. In case of $Li_2O$-stabilized $Na^+$-beta-alumina, ${\beta}^{{\prime}{\prime}}$-phase fraction and relative density of specimen sintered at $1600^{\circ}C$ were 94.7% and 98%, respectively. Relative density of MgO-stabilized $Na^+$-beta-alumina increased with a rise in sintering temperature.

Screening of SrO-B2O3-P2O5 Ternary System by Combinatorial Chemistry and QSAR (조합화학과 QSAR를 이용한 SrO-B2O3-P2O5 3원계 청색형광체 개발)

  • Yoo, Jeong-Gon;Back, Jong-Ho;Cho, Sang-Ho;Sohn, Kee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.391-398
    • /
    • 2005
  • It is known that $BaMgAl_{10}O_{17}:Eu^{2+}(BAM)$ phosphors currently used have a serious thermal degradation problem. We screened $SrO-B_2O_3-P_2O_5$ system by a solution combinatorial chemistry technique in an attempt to search for a thermally stable blue phosphor for PDPs. A Quantitative Structure Activity Relationship (QSAR) was also obtained using an artificial neural network trained by the result fiom the combinatorial screening. As a result, we proposed a promising composition range in the $SrO-B_2O_3-P_2O_5$ ternary library. These compositions crystallized into a single major phase, $Sr_6BP_5O_{20}:Eu^{2+}$. The structure of $Sr_6BP_5O_{20}:Eu^{2+}$ was clearly determined by ab initio calculation. The luminescent efficiency of $Sr_6BP_5O_{20}:Eu^{2+}$ was 2.8 times of BAM at Vacuum Ultra Violet (VUV) excitation. The thermal stability was also good but the CIE color chromaticity was slightly poor.

Optimization of VUV Characteristics of M3MgSi2O8:Eu2+ (M=Ca, Sr, Ba) Phosphor by Spray Pyrolysis (분무열분해법을 이용하여 M3MgSi2O8:Eu2+ (M=Ca, Sr, Ba) 형광체 분말의 VUV 특성 최적화)

  • Jung, You-Ri;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.399-404
    • /
    • 2008
  • Spray pyrolysis was applied to prepare $M_{3}MgSi_{2}O_{8}:Eu^{2+}$ (M=Ca, Sr, Ba) blue phosphor powder. The library of a Ca-Sr-Ba ternary system was obtained by a combinatorial method combined with the spray pyrolysis in order to optimize the luminescent property under vacuum ultraviolet (VUV) excitation. 10 potential compositions were chosen from the first screening. The emission shifted to longer wavelength as Ca became a dominant element and the emission intensity was greatly reduced in the composition region at which Ba is dominant element. On the base of the first screening result, the second fine tuning was carried out in order to optimize the luminescence intensity under VUV excitation. The optimal composition for the highest luminescence intensity was $(Ca_{1.7},\;Sr_{0.3},\;Ba_{1.0})Si_{2}O_{8}:Eu^{2+}$ which had the color coordinate of (0.152, 0.072) and about 64% emission intensity of $BaMgAl_{10}O_{17}$ (BAM) phosphor.