• Title/Summary/Keyword: ternary blended low heat cement

Search Result 15, Processing Time 0.018 seconds

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.

Construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity ($23,000m^3$ 대용량 바닥스래브 콘크리트의 시공기술)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1035-1040
    • /
    • 2003
  • This research investigates the actual data and construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity in site of the in-ground type LNG receiving terminal having 20,000kl storage capacity. The purpose of this study is to determine the optimum mix design and control the actual concreting procedures including concrete production, transportation, placement, vibrating and curing in site. For this purpose, the optimum mix design using ternary blended cement(furnace slag cement+fly ash) and under piping method having 11 gates and 7 distributors are selected. As test results of actual construction, concrete placement is finished during 68hours with good success and obtained the good quality of the fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat. Also, actual data for all of concrete procedures are proved successful and satisfied with our specifications.

  • PDF

The Influence of Specimen Volume on the Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승량에 미치는 시험체 용적의 영향)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.659-666
    • /
    • 2012
  • To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise ($Q_{\infty}$) and the reaction factor (r) of TBC were the lowest. Test results also showed that $Q_{\infty}$ and r changed with respect to the volume of test specimen. $Q_{\infty}$ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.

An Experimental Study on the Hydration Heat of Concrete Using Phosphate based Inorganic Salt (인산계 무기염을 이용한 콘크리트의 수화 발열 특성에 관한 실험적 연구)

  • Jeong, Seok-Man;Kim, Se-Hwan;Yang, Wan-Hee;Kim, Young-Sun;Ki, Jun-Do;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • Whereas the control of the hydration heat in mass concrete has been important as the concrete structures enlarge, many conventional strategies show some limitations in their effectiveness and practicality. Therefore, In this study, as a solution of controling the heat of hydration of mass concrete, a method to reduce the heat of hydration by controlling the hardening of cement was examined. The reduction of the hydration heat by the developed Phosphate Inorganic Salt was basically verified in the insulated boxes filled with binder paste or concrete mixture. That is, the effects of the Phosphate Inorganic Salt on the hydration heat, flow or slump, and compressive strength were analyzed in binary and ternary blended cement which is generally used for low heat. As a result, the internal maximum temperature rise induced by the hydration heat was decreased by 9.5~10.6% and 10.1~11.7% for binder paste and concrete mixed with the Phosphate Inorganic Salt, respectively. Besides, the delay of the time corresponding to the peak temperature was apparently observed, which is beneficial to the emission of the internal hydration heat in real structures. The Phosphate Inorganic Salt that was developed and verified by a series of the aforementioned experiments showed better performance than the existing ones in terms of the control of the hydration heat and other performance. It can be used for the purpose of hydration heat of mass concrete in the future.