• Title/Summary/Keyword: termite attractant

Search Result 2, Processing Time 0.016 seconds

Bioactivity of Cajuput Seedling n-Hexane Extract as an Attractant for Subterranean Termite Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae)

  • Arinana ARINANA;Rama Aditya DHARMA;Rita Kartika SARI;Anindya Intan RAHMAWATI;Riki ANDIKA;Dodi NANDIKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.31-46
    • /
    • 2024
  • Subterranean termite attacks on cajuput (Melaleuca cajuputi) seedling roots were widespread in several of Java's Perum Perhutani Forest Management Units. This attack was suspected to be related to the chemical components of the cajunput seedling roots. This study was conducted to determine the bioactivity of cajuput seedling root extract as an attractant for the subterranean termite Coptotermes curvignathus Holmgren (Isoptera: Rhinotermitidae). The extraction process was performed according to ASTM D1108-96, and the extract was characterized using gas chromatography-mass spectrometry (GC-MS). Bioactivity testing of the extracts was carried out using attractiveness and no-choice feeding bioassays. The results showed that the average root extraction yield from cajunput seedlings was 4.94%. The attractiveness of the extract solutions at concentrations of 0.50%, 0.75%, and 1.00% were 45.33%, 62.00%, and 74.67%, respectively. The mortality rate of C. curvignathus termites ranged from 9.63% to 24.44%. Cajuput seedling root extract's lethal concentration 50 was 2.45% (non-toxic). GC-MS analysis showed that the extract contained linoleic acid, which has the potential to attract insects.

Applicability of Carbon Dioxide as an Attractant for Termites in Republic of Korea (한국 서식 흰개미의 유인물질로서 이산화탄소(CO2)의 적용 가능성)

  • Tae Heon Kim;Man Hee Lee;Hyun Ju Lee;Yong Jae Chung
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • In the Republic of Korea, many of the wooden architectural heritage are located in forests and, therefore, are vulnerable to termite damage. In Korea, the predominant approach to termite control involves chemical control methods using termiticides. The rapid attraction of termites to termiticides is essential to shorten the control period. The current study investigated the attraction of Korean termites to carbon dioxide and the appropriate concentration of carbon dioxide required for effective attraction by conducting a basic experiment on the attracting effect in the underground environment. The results showed that carbon dioxide is effective for attracting termites, and an effective concentration range of 10% or less was selected. Additionally, this study established the potential and applicability of carbon dioxide as an attractant in the control of subterranean termites. Future studies should aim at conducting field studies on the application of carbon dioxide to improve the termite control effect, particularly in preserving wooden architectural heritage.