• Title/Summary/Keyword: termination

Search Result 1,182, Processing Time 0.026 seconds

Measurement of Noise Wave Correlation Matrix for On-Wafer-Type DUT Using Noise Power Ratios (잡음전력비를 이용한 온-웨이퍼형 DUT의 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.111-123
    • /
    • 2019
  • In this paper, we propose a method for defining the input termination for on-wafer-type device under test (DUT) measurement. Using the newly defined input termination and noise wave correlation matrix (NWCM) measurement method based on noise power ratio, the NWCM of the on-wafer-type DUT was measured. We demonstrate a noise measurement configuration that includes wafer probes and bias tees to measure the on-wafer DUT. The S-parameter of the adapter that combines the bias tee, probe, and a line terminated by open is required to define the input termination for on-wafer DUT measurement. To measure the S-parameter of the adapter, a 2-port S-parameter measurement method using 1-port measurement is introduced. Using the measured S-parameters, a method for defining the new input termination for on-wafer-type DUT measurement is applied. The proposed method involves the measurement of the NWCM of the chip with a 1.5 dB noise figure. The noise parameters of the chip were obtained using the measured NWCM. The results indicate that the obtained values of the noise parameters are similar to those mentioned on a datasheet for the chip. In addition, repeated measurements yielded similar results, thereby confirming the reliability of the measurements.

Optimal Life Testing Procedure for a System with Exponentially Distributed Failure Times

  • Yun, Sang-Un
    • Journal of the Korean Statistical Society
    • /
    • v.11 no.2
    • /
    • pp.77-87
    • /
    • 1982
  • The choice if constants that define a life testing procedure is considered in terms of the test termination time (censoring time) and the number of items to be tested subject to a given range of variance of the expected life time, where the failure time of life testing is exponentially distributed.

  • PDF

OVERVIEW OF RELIABILITY AND RELIABILITY CASE STUDIES

  • Murthy, D.N.P.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.04a
    • /
    • pp.3-11
    • /
    • 2004
  • Failure is the termination of the ability of an item to perform a required function.[IEC 50]. Equipment fails, if it is no longer able to carry out its intended function under the specified operational conditions for which it was designed.(omitted)

  • PDF

A Study on the Mobile Termination Charge Determination Methodology (합리적 이동망 원가산정방안 분석)

  • 변재호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.102-105
    • /
    • 2002
  • 본 고에서는 이동망 착신접속료 규제 필요성과 다양한 착신 접속료 산정 대안을 살펴보고 소매시장 경쟁측면, 접속시장 효율성 측면, 접속제공자 수지보전 측면, 그리고 접속원가 배분측면 등의 회계적인 측면에서 가장 합리적인 이동망 착신접속료 산정방안을 살펴보고자 한다.

  • PDF

The Effect of Image Rejection Filter on Flatness of Microwave Terrestrial Receiver

  • Han, Sok-Kyun;Park, Byung-Ha
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.86-90
    • /
    • 2003
  • A flat conversion loss in microwave mixer is hard to achieve if integrating with an image rejection filter(IRF). This is due to the change of termination condition with respect to the LO and IF frequency at RF port where the filter has 50 ohm termination property only in the RF band. This paper describes a flatness maintenance in the down mixer concerning a diode matching condition as well as an electrical length of embedding line at RF port. The implemented single balance diode mixer is suitable for a 23 ㎓ European Terrestrial Radio. RF, LO and fixed IF frequency chosen in this paper are 21.2∼22.4 ㎓, 22.4∼23.6 ㎓ and 1.2 ㎓, respectively. The measured results show a conversion loss of 8.5 ㏈, flatness of 1.2 ㏈ p-p, input P1㏈ of 7㏈m, IIP3 of 15.42 ㏈m with nominal LO power level of 10㏈m. The return loss of RF and LO port are less than - 15 ㏈ and - 12 ㏈, respectively and IF port is less than - 6 ㏈. LO/RF and LO/IF isolation are 18 ㏈ and 50 ㏈, respectively. This approach would be a helpful reference for designing up/down converter possessing a filtering element.