• Title/Summary/Keyword: terminal restriction fragment length polymorphism (t-RFLP)

Search Result 45, Processing Time 0.026 seconds

Anaerobic digestion for food wastewater using HADS Pilot Plant and analysis of microbial community in the digester (HADS Pilot Plant를 이용한 음폐수의 혐기성 소화 및 미생물 군집 변화 분석)

  • Ju, Dong-Hun;Lee, Jung-Min;Park, Seong-Bum;Sung, Hyun-Je;Bae, Jae-Sang;Sang, Byoung-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • We(Hansol EME Co. Ltd.) proceeded anaerobic digestion test for domestic food wastewater applying to two operating method for increasing of OLR. The methods are as follows. One was the rapidity operating method which was increasing the OLR continuously and rapidly and the other was the terraced operating method which was increasing the OLR having adaptation period for each step. As a result of this tests, the ratio of VFA/Alkalinity of the process was very unstable under the rapidity operating method then the volume of produced biogas was dramatically decreased. However the process was shown stable performance under the terraced operating method maintaining the ratio of VFA/Alkalinity less than 0.4. Also, the process was performing the biogas recovery of $0.8Nm^3/kgVS_{rem}/d$ and the VS removal ratio of 85%. T-RFLP analysis about the community of bacteria and methanogen is also conducted to check the change of the microbial community according to the methods of OLR increasing operation. The microbial community was changed by the methods of OLR increasing operation according to the result of T-RFLP analysis. Although the anaerobic digestion test was executed by same pilot plant, the reactivity and the tolerance of microbial community for surrounding environment could be considerably changed by the operating method for the process.

Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor (회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조)

  • Jeong, Soon-Jae;Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere

  • Kong, Hyun Gi;Kim, Nam Hee;Lee, Seung Yeup;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.136-144
    • /
    • 2016
  • Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF

The Fermentative Hydrogen Production in Trickling Bed Biofilter Filled with Hydrophilic-and Hydrophobic-Media (소수성 및 친수성 담체를 이용한 Trickling Bed Biofilter의 생물학적 수소생산)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Gu, Man-Bock;Chae, Hee-Jeong;Sang, Byoung-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.379-388
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and conducted for hydrogen production under the anaerobic fermentation of sucrose. Each bioreactor consisted of the column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed by the different hydraulic retention time(HRT), and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% of biogas throughout the operation. Hydrogen production rate was increased till $10.5\;L{\cdot}h^{-1}{\cdot}L^{-1}$ of bioreactor when influent sucrose concentrations and recycle rates were varied. At the same time, the hydrogen production rate with hydrophobic media application was higher than its hydrophilic media application. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate, butyrate and lactate. In order to run in the long term operation of both reactor filled with hydrophilic and hydrophobic media, biofilm accumulation on hydrophilic media and biogas produced should be controlled through some process such as periodical backwashing or gas-purging. Four sample were collected from each reactor on the opposite hydrogen production rate, and their bacterial communities were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR products generated using bacterial 16s rRNA gene primers (8f and 926r). It was expressed a marked difference in bacterial communities of both reactors. The trickling bed bioreactor with hydrophobic media demonstrates the feasibility of the process to produce hydrogen gas. A likely application of this reactor technology can be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.