• Title/Summary/Keyword: tensor-voting

Search Result 14, Processing Time 0.019 seconds

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Efficient 3D Geometric Structure Inference and Modeling for Tensor Voting based Region Segmentation (효과적인 3차원 기하학적 구조 추정 및 모델링을 위한 텐서 보팅 기반 영역 분할)

  • Kim, Sang-Kyoon;Park, Soon-Young;Park, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.10-17
    • /
    • 2012
  • In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. In this paper, we propose a method for creating 3D virtual scenes based on 2D image that is completely automatic and requires only a single scene as input data. The proposed method is similar to the creation of a pop-up illustration in a children's book. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting to an image segmentation. The tensor voting is used based on the fact that homogeneous region in an image is usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. And then, our algorithm labels regions of the input image into coarse categories: "ground", "sky", and "vertical". These labels are then used to "cut and fold" the image into a pop-up model using a set of simple assumptions. The experimental results show that our method successfully segments coarse regions in many complex natural scene images and can create a 3D pop-up model to infer the structure information based on the segmented region information.

Quantification of Fibers through Automatic Fiber Reconstruction from 3D Fluorescence Confocal Images

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Motivation: Fibers as the extracellular filamentous structures determine the shape of the cytoskeletal structures. Their characterization and reconstruction from a 3D cellular image represent very useful quantitative information at the cellular level. In this paper, we presented a novel automatic method to extract fiber diameter distribution through a pipeline to reconstruct fibers from 3D fluorescence confocal images. The pipeline is composed of four steps: segmentation, skeletonization, template fitting and fiber tracking. Segmentation of fiber is achieved by defining an energy based on tensor voting framework. After skeletonizing segmented fibers, we fit a template for each seed point. Then, the fiber tracking step reconstructs fibers by finding the best match of the next fiber segment from the previous template. Thus, we define a fiber as a set of templates, based on which we calculate a diameter distribution of fibers.