• Title/Summary/Keyword: tension distribution

Search Result 403, Processing Time 0.024 seconds

A Study on the Atomization Characteristics of the Ultrasonic-Energy-Added Low Viscosity Biodiesel Blended Fuel (초음파(超音波) 에너지 부가(附加) 저 점도 바이오디젤 혼합연료(混合燃料)의 미립화 특성(微粒化 特性)에 관한 연구(硏究))

  • Song, Yong-Seek;Kim, Yong-Cheol;Ryu, Jung-In
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • This experiment was undertaken to investigate the atomization characteristics of the low viscosity biodiesel blended fuel and ultrasonic energy added one. Test fuels were conventional diesel fuel and biodiesel fuel. We compared to the characteristics of viscosity and surface tension, SMD between low viscosity biodiesel blended fuel and ultrasonic energy added one. Sauter mean diameter was measured under the variation of the spray distance. Viscosity and surface tension was measured under the variation of the time trace. To measure the droplet size, we used the Malvern system 2600C. Droplet size distribution was analyzed from the result data of Malvern system. Through this experiment, we found that the condition of the ultrasonic energy added situation had smaller Sauter mean diameter of droplet, viscosity and surface tension than that of the conventional situation.

  • PDF

An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints (Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구)

  • CHANG, Dong Il;Lee, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

The Effects of Sc on the Microstructure of Hypoeutectic Al-Si Alloys (아공정 Al-Si합금 조직에 미치는 Sc의 효과)

  • Kim, Myung-Han;Lee, Jong-Tae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.145-152
    • /
    • 2004
  • The eutectic Si in Al-8.5wt.%Si alloy was changed from large flake to fine lemellar(or fibrous) shape when the Sc amount in the Al-Si alloy reaches 0.2wt.%. The optimum amount of Sc for the best modification effect was 0.8wt.% and slight decrease of modification effect occurred over this value. The study on the distribution of the modifiers(Sr, Na, and Sc) and the measurement of the surface tension of the Al-8.5wt.%Si alloy melt added with Sr, Na, and Sc modifier, respectively, reveals that Sc modifies the eutectic Si by the decrease of surface tension, while Sr and Na modify the eutectic Si mainly by impurity induced twinning mechanism.

A Dynamic Response Analysis of Tension Leg Platforms Including Drag Forces in Regular Waves (규칙파중 항력을 고려한 TLP의 동적응답해석)

  • Ha, Young-Rok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • For predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves, a numerical scheme is introduced. The numerical approach in this paper is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are newly included in order to estimate the responses of members with better accuracy. Comparisons with other's results verifies the works in this paper.

Effects of tensioning forces on the structural behavior of cable-stayed bridges

  • Lam, Pauline Lin Li;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.457-464
    • /
    • 2022
  • Optimization in distribution of stay cable forces is one of the most difficult aspects in the design of cable-stayed bridges. This article attempts to examine tension force influence on structural behavior of cable-stayed bridges. For the examination, finite element modeling using nonlinear static and nonlinear modal analyses was completed and compared to structural experimental results. Variables analyzed in this parametric study were: 1) Number of stay cables; 2) Tension of the stay cables, and 3) Stay cable pattern - harp and semi-fan patterns. Though the findings from the analysis are limited to the tested models, the study gives insight on the structural behavior of actual cable stayed bridges.

Cable-pulley brace to improve story drift distribution of MRFs with large openings

  • Zahrai, Seyed Mehdi;Mousavi, Seyed Amin
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.863-882
    • /
    • 2016
  • This study aims to introduce a new bracing system by which even super-wide frames with large openings can be braced. The proposed system, hereafter called Cable-Pulley Brace (CPB), is a tension-only bracing system with a rectilinear configuration. In CPB, a wire rope passes through a rectilinear path around the opening(s) and connects the lower corner of the frame to its opposite upper one. CPB is a secondary load resisting system with a nonlinear-elastic hysteretic behavior due to its initial pre-tension load. As a result, the required energy dissipation would be provided by the MRF itself, and the main intention of using CPB is to contribute to the initial and post-yield stiffness of the whole system. Using a stiffness calibration technique, optimum placement of the CPBs is discussed to yield a uniform displacement demand along the height of the structure. A displacement-based design procedure is proposed by which the MRF with CPB can be designed to achieve a uniform distribution of inter-story drifts with predefined values. Obtained results indicated that CPB leads to significant reductions in maximum and residual deformations of the MRF at the expense of minor increase in the maximum base shear and developed axial force demands in the columns. In the case of a typical 5-story residential building, compared to SMRF system, CPB system reduces maximum amounts of inter-story and residual drifts by 35% and 70%, respectively. Moreover, openings of the frame are not interrupted by the CPB. This is the most appealing feature of the proposed bracing system from architectural point of view.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Effect of Cutting Off Tension Bars in R/C Beams On the Full Scale and Model Specimens (철근콘트리트 보에서 체단된 철근의 효과에 관한 연구 실물 및 축소모형실험을 중심으로)

  • 이리형;최창식;임재형
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.1
    • /
    • pp.79-90
    • /
    • 1990
  • The purpose of this paper is to study on the effect of cutting off tension bars in reinforced concrete beams. that is, the ultimate strength, the failure mode and thl} tension stress distribution through the span. To achieve this purpose, a full-scale frame and seven small scale model beams (five rectangular and two T-section beams) were tested. The four main model specimens and two speciml}ns without cutting off tension bars 1,'{ere analyzed as plane stmss element with package program ADINA. As a result of test and analysis, the shorter' distance bet ween the reaction point and the cutting off point, the higher the ultimate strength of a bl}am will be when other physical properties are equal.

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF