• Title/Summary/Keyword: tension cracks

Search Result 248, Processing Time 0.022 seconds

Case Study on the Failure Causes of Gneiss Slope Occurred Tension Crack (편마암비탈면에서 인장균열 파괴원인 사례 연구)

  • Chun, Byungsik;Noh, Insoo;Kong, Jinyoung;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.27-35
    • /
    • 2012
  • The discontinuity of rock is one of important elements that have impact on the dynamic movement of rock. A slope made of gneiss has complicated geological structure because of the gneiss forming process through metamorphism covering wide range and the anisotropic structure with foliation. In this study, before cutting slope, the rock of slope had been found as a good quality by the boring test. But during construction tension cracks had occurred in the section with 170m length during large-scale excavation work with depth more than 20m. Ground surface geological investigation, boring exploration, resistivity logging and borehole image processing had been done to find the causes of the tension crack. It was possible to estimate the scale of fault existing in large area through resistivity logging and geological investigation. Large scale slickenside and fault clay had been found as the result of comprehensive analysis.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

A Study on the Fatigue Failure Behavior SM45C on Ion-Nitrided under Alternating Tension-Compression Axial Loading (반복 인장-압축하중을 받는 이온질화처리한 SM 45C의 피로파괴거동에 관한 연구)

  • Man, Chang-Gi;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.71-80
    • /
    • 1988
  • This paper dealt with experimentally the effect of $N_2$ and $H_2$ gas mixtures ratio in the fatigue characteristics of SM45C on Ion-nitrided. The specimen were treated water cooling after Ion-nitriding at $500^{\circ}C$ and 5 torr. in 80% $N_2$and 50% $N_2$gas mixtures ratio in the atmosphere for 3 hrs. The hardness distribution and the depth of nitriding layer shows more increase in 80% $N_2$gas mixture ratio than 50% $N_2$. Ion-nitrided specim- en for 80% $N_2$gas mixture ratio show more increase infatigue strenght in the $>1.5{\times}10^5$ cycles region than 50% $N_2$. In the $<1.5{\times}10^5$cycles region, fatigue failure is due to cracking of the brittle nitrided case, and the propergation of the surface cracks into the core. But in the $>1.5{\times}10^5$cycles region, it is found that cracks propagate from the non-metallic inclusions in the subsurface.

  • PDF

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

  • Kim, Hyung-Rae;Choi, Won-Chang;Yoon, Sang-Chun;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.43-52
    • /
    • 2016
  • The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with irregular corrosion of their reinforced concrete. The development of cracks in the corroded area was found to be dependent on the level of corrosion, and transverse cracks developed due to tensile loading. Based on this crack development, the average stress versus deformation in the rebar and concrete could be determined experimentally and numerically. The results, determined via finite element analysis, were calibrated using the experimental results. In addition, bond elements for reinforced concrete with corrosion are proposed in this paper along with a relationship between the shear stiffness and corrosion level of rebar.

Fatigue crack growth and remaining life estimation of AVLB components

  • Chen, Hung-Liang Roger;Choi, Jeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.651-674
    • /
    • 2006
  • The fatigue cracks initiate and propagate in the Armored Vehicle Launch Bridge (AVLB) components, especially like the splice doubler angle, splice plate, and bottom chord, due to the cyclic loading by repeated AVLB-launchings and tank-crossings. In this study, laboratory fatigue tests were conducted on six aluminum 2014-T6, four aluminum 7050-T76511, and four ASTM A36 steel compact-tension specimens to evaluate the crack growth behavior of the materials used for the components. The experimental results provide the relationship (Paris Law) between crack growth rate, da/dn, and stress intensity range, ${\Delta}K$, whose material dependent constants C and m can later be used in the life estimation of the components. Finite Element Method (FEM) was used to obtain the stress intensity factor, K, of the components with cracks. Because of the complexity of loading conditions and component geometry, several assumptions and simplifications are made in the FEM modeling. The FEM results, along with the results obtained from laboratory fatigue tests, are then utilized to estimate critical crack length and remaining life of the components.

ACOUSTIC EMISSION CHARACTERISTICS OF STRESS CORROSION CRACKS IN A TYPE 304 STAINLESS STEEL TUBE

  • HWANG, WOONGGI;BAE, SEUNGGI;KIM, JAESEONG;KANG, SUNGSIK;KWAG, NOGWON;LEE, BOYOUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.454-460
    • /
    • 2015
  • Acoustic emission (AE) is one of the promising methods for detecting the formation of stress corrosion cracks (SCCs) in laboratory tests. This method has the advantage of online inspection. Some studies have been conducted to investigate the characteristics of AE parameters during SCC propagation. However, it is difficult to classify the distinct features of SCC behavior. Because the previous studies were performed on slow strain rate test or compact tension specimens, it is difficult to make certain correlations between AE signals and actual SCC behavior in real tube-type specimens. In this study, the specimen was a AISI 304 stainless steel tube widely applied in the nuclear industry, and an accelerated test was conducted at high temperature and pressure with a corrosive environmental condition. The study result indicated that intense AE signals were mainly detected in the elastic deformation region, and a good correlation was observed between AE activity and crack growth. By contrast, the behavior of accumulated counts was divided into four regions. According to the waveform analysis, a specific waveform pattern was observed during SCC development. It is suggested that AE can be used to detect and monitor SCC initiation and propagation in actual tubes.

A Study on the Initiation and Growth Behaviors of Surface Crack in a Type 304 Stainless Steel at Room Temperature (SUS 304鋼 의 常溫下 表面피勞균열 의 發생.成長 擧動 에 관한 硏究)

  • 서창민;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.195-200
    • /
    • 1984
  • In-plane tension fatigue tests(R=0.1) were carried out to investigate the initiation and growth behaviors of very small surface fatigue cracks on smooth unnotched surfaces of type 304 stainless steel at room temperature. The present paper deals with the unification of two approaches to the analysis of fatigue: the one approach is based on fracture mechanics concept and the other on low-cycle fatigue concept. The results are;(1)Maximum crack length, 2 $a_{max}$, initiated at a very small surface scratch not exceeding 20 .mu.m which can exist on the surface after buffing. And the density of small surface crack is remarkably low compared to that of mild steel. (2) The growth rate, d(2a)/dN, of very small fatigue cracks can be represented by one straight line as a function of either stress intensity factor range, .DELTA. $K_{I}$ or cyclic total strain intensity factor range, .DELTA. $K_{\epsilon}$$_{I}$/, for various values of the nominal stress range.e.e.e.e.

Parameter Study of Harmonics Generation Using One-dimensional Model of Closed Crack (닫힘균열의 1차원 모델을 이용한 고조파 발생에 대한 파라미터 연구)

  • Yang, Sung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.398-403
    • /
    • 2011
  • When a crack exists under a residual stress, for example in welds, the crack can be closed and it shows non symmetric behavior for tension and compression. Ultrasonic detection method for those nonlinear cracks has been developed recently. The method uses the higher order harmonics generating at the crack surface. In this study, parameter study was carried out for the analysis of the harmonics generation at a nonlinear contact interface as a preliminary study for general 3-dimensional cracks. One-dimensional problem with simple bilinear behavior for the contacting surface was considered. The amplitude of second harmonic to the fundamental wave was obtained for various stiffness ratios, incident frequencies, and the contacting layer thicknesses.

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

Flexural Behavior of Dual Concrete Beams Using Fiber Reinforced Concrete at Tensile Parts (섬유보강 고인장강도 콘크리트를 이용한 이중 콘크리트 보의 휨 거동 해석)

  • 박대효;부준성;조백순
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.584-592
    • /
    • 2001
  • The cracks are developed in reinforced concrete(RC) beams at the early stage of service load because of the relatively small tensile strength of concrete. The structural strength and stiffness are decreased by reduction of tensile resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structures and decrease the tensile flexural cracks and deflections. Therefore, the RC beams used of the fiber reinforced concrete at. tensile part ensure the safety and serviceability of the concrete structures. In this work, analytical model of a dual concrete beams composed of the normal strength concrete at compression part and the high tension strength concrete at tensile part is developed by using the equilibrium conditions of forces and compatibility conditions of strains. Three groups of test beams that are formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio are tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the RC beams is increased in approximately 30%. In addition, the flexural rigidity, as used here, referred to the slope of load-deflection curves is increased and the deflection is decreased.