• Title/Summary/Keyword: tension buckling

Search Result 127, Processing Time 0.031 seconds

Structural Characteristics on the Buckling Strength for 600MPa Grade High Strength Steel Compression Members (600MPa급 고강도강 압축재의 좌굴강도에 관한 구조특성)

  • Lee, Myung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.609-616
    • /
    • 2010
  • The objective of this study is to investigate the structural character of the buckling strength of 600MPa-class high-strength steel compression members. The buckling strength of circular hollow-section columns is evaluated by a numerical analysis of the stress-strain curves of the tension test results. The numerical analysis was based on the beam-column theory and the tangent modulus theory. It was considered possible to enlarge the nominal yield strength of the 600MPa-class steel.

Stability analysis of bimodular pin-ended slender rod

  • Yao, Wenjuan;Ma, Jianwei;Hu, Baolin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.563-581
    • /
    • 2011
  • Many novel materials, developed in recent years, have obvious properties with different modulus of elasticity in tension and compression. The ratio of their tensile modulus to compressive modulus is as high as five times. Nowadays, it has become a new trend to study the mechanical properties of these bimodular materials. At the present stage, there are extensive studies related to the strength analysis of bimodular structures, but the investigation of the buckling stability problem of bimodular rods seems to cover new ground. In this article, a semi-analytical method is proposed to acquire the buckling critical load of bimodular slender rod. By introducing non-dimensional parameters, the position of neutral axis of the bimodular rod in the critical state can be determined. Then by combining the phased integration method, the deflection differential equation of bimodular pin-ended slender rod is deduced. In addition, the buckling critical load is obtained by solving this equation. An example, which is conducted by comparing the calculation results between the three of the methods including the laboratory tests, numerical simulation method and the method we developed here, shows that the method proposed in the present work is reliable to use. Furthermore, the influence of bimodular characteristics on the stability is discussed and analyzed.

Theoretical and experimental studies of unbraced tubular trusses allowing for torsional stiffness

  • Chan, S.L.;Koon, C.M.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.209-222
    • /
    • 2002
  • This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Structural Performance Improvement of Composite Plates By Using Curvilinear Fiber Format (곡선섬유를 이용한 복합재료 평판의 구조적 성능 향상)

  • 이호영
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.31-42
    • /
    • 1999
  • In aerospace industry, the improvement of structural performance of fight structure without increasing weight has great advantage. In this study. an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight of composite plates was investigated. By using the curvilinear fiber format a method to increase the buckling load and tension failure load simultaneously was investigated for composite plates with central hole with finite element method. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence. And, for the cases studied, the failure mechanism was also investigated. For the manufacturing of the curvilinear fiber format, smoothly and continuously changing fiber path is necessary. In this study, a simple method to find the smoothly changing fiber path by using the fiber angles obtained with finite element method was presented.

  • PDF

Fracture toughnesses of thin sheet materials by using CT specimens (CT 시편을 이용한 박판재료의 파괴인성 특성)

  • Lee, Eok-Seop;Lee, Yun-Pyo;Gang, In-Mo;Kim, Seon-Yong;Kim, Seung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (II) (선체 박판구조의 용접변형 제어에 관한 연구(II))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.504-508
    • /
    • 2007
  • In the case of thin plate blocks, buckling deformation due to longitudinal shrinkage is the most important weld-induced deformation. This paper is concerned with developing the formula to predict the longitudinal shrinkage due to welding, in which mechanical tension effect in welding direction is accounted for. For this purpose, bead on plate welding test has been carried out for the 27 thin plate specimens with varying welding conditions and magnitude of tensile load. Empirical formula of predicting the longitudinal shrinkage has been derived based on the results of welding test, in which effect of mechanical tension is included. The derived formula can be usefully used in predicting the level of tensile load to reduce the longitudinal shrinkage.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.

The Development of Advanced Buckling Strength Estimation System (선박 판부재의 개선된 좌굴평가 시스템의 개발)

  • Ham, J.H.;Kim, U.N.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.53-60
    • /
    • 1997
  • Generally, a safety estimation based on the buckling strength is carried out to evaluate the strength of plate members in the design process of ship hull structures and more accurate and efficient tool for the buckling strength estimation of enormous plate members of ship structure is naturally demended for saving design process. While, in the reason that the design codes of classification societies do not consider the various effects or include some effects roughly, considerate safe side results are suggested occasionally. In this study, advanced buckling strength estimation system prepared various classification buckling evaluation codes and new evaluation code considering the effects of in-plane tension, plate boundary condition, lateral load & residual stress is developed using the window management system of engineering workstation. Additionally maximum deflection estimation formula is equipped for the increase of fabrication reliability of thin plate ship structure. From this evaluation system, more reliable buckling safety of plate panel will be guaranteed in the ship hull design stage. In order to expand the use of this system pc version system will be developed sooner or later.

  • PDF