• 제목/요약/키워드: tensile-strength ratio test

검색결과 504건 처리시간 0.025초

콘크리트 직접인장강도의 세장비 효과 (Effect of Aspect Ratio in Direct Tensile Strength of Concrete)

  • 홍건호
    • 콘크리트학회논문집
    • /
    • 제15권2호
    • /
    • pp.246-253
    • /
    • 2003
  • 콘크리트 부재는 직접 인장력에 저항하도록 설계되지는 않는 것이 일반적이나, 부재의 균열강도 등을 산정하기 위해서는 반드시 확인하여야 하는 재료 특성 중의 하나이다. 콘크리트의 인장강도 시험방법은 주로 직접인장, 휨인장, 쪼갬인장의 3가지로 구분하고 있으나, 이 중 직접인장시험법은 시험체에 순수인장력을 가력할 수 있는 실험방법상의 문제로 거의 수행되지 못하여 온 것이 사실이다. 본 연구에서는 직접인장시험방법의 검토 및 시험체의 세장비, 크기 등이 직접인장강도에 미치는 영향에 대하여 연구하였다. 단부 보강편을 이용한 직접인장강도의 실험은 RILEM 및 U.S.Bureau of Reclamation의 규정을 사용하였으며, 총 4가지 종류의 세장비와 2가지 크기의 시험체에 대한 연구를 수행하였다. 실험의 결과는 동일변수의 쪼갬인장강도 및 휨인장강도와 비교$.$분석을 실시하였으며, 이를 신뢰성있는 선행 연구자들의 연구결과와 비교하여 그 타당성을 검증하였다.

무기질 첨가제를 사용한 상온 재활용 아스팔트 혼합물의 공용성 평가 (Performance Evaluation of Cold-Recycling Asphalt Mixtures with an Inorganic Additive)

  • 김경수;김현겸;김원재;박창규;이현종
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.27-33
    • /
    • 2018
  • PURPOSES : The purpose of this study is to estimate the optimum content of an inorganic additive for cold-recycled asphalt mixtures and evaluate its performance. METHODS : An indirect tensile test, a tensile-strength ratio test, and an indirect tensile-fatigue test were conducted on cold-recycling asphalt mixtures with various additives. RESULTS : The laboratory performance tests indicated that granulated blast-furnace slag mixed with inorganic and cement activators provided optimum performance. The performance results of the cold-recycled asphalt pavement were similar to the inorganic and cement activators' performance in terms of the indirect tensile strength, tensile strength ratio, and indirect tensile-fatigue test. CONCLUSIONS : Overall, the performance of a cold-recycled asphalt mixture using inorganic additives and emulsion asphalt was comparable to a warm-recycled asphalt mixture. However, more experiments aimed at improving its performance and studying the effect of the inorganic additives must be conducted.

Double-Punch Test에 의한 콘크리트의 인장강도 시험에 관한 연구 (A Study on Double - Punch Test for Tensile Strength of Concrete)

  • 이우종;고재군
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.82-94
    • /
    • 1988
  • The purpose of this study is to introduce the Double Punch test method which is an indirect testing method of tensile strength of concrete, and to compare with the tensile strength of concrete as determined by the split-cylinder test, a practical method for performing the Double Punch test to obtain the tensile strength of concrete is proposed and recommended for general use. In this study, the dimensions of cylindrical specimens used in the Double-Punch test were 15X30cm, 15X15cm, 10${\times}$(20cm, and 5${\times}$l0cm, and in the split-cylinder test were 15${\times}$(30cm, 15${\times}$(15cm, and 10${\times}$(20cm. And the diameters of loading punches used in the Double-Punch test were 1.5cm, 2.5cm, and 3.5 cm. The results obtained from tests are summarized as follows ; 1. In the split-cylinder test, the tensile strength of concrete by the linear elasticity theory is similar to that of plasticity theory. 2. Both split-cylinder test and Double-Punch test, tensile strength of concrete is increased with decreasing specimen size. This tendency is identical when the ratio of specimen diameter to height is 1: 2, but that tendency is quite different when the ratio is 1: 3. In the Double-Punch test, if specimen size is constant, by increasing the punch size, tensile strength of concrete is increased, too. 4. Using a 15 ${\times}$( 15 cm cylinder specimen and 3.5 cm diameter punch in the Double Punch test would give the most uniform and consistent result in tensile strength, and the result showed a gQod correlation with splitting tensile strength from 15 x 30cm specimen. 5. In order to obtain satisfactory results and to nuninuze variability, it is proposed that specimens of 15 cm in diameter and 15 cm in height with two 3.5 cm diameter punches should be used. It seems, therefore, reasonable tt) take f't=0.0024 P(kg / cm$^2$) as a working formula for computing the tensile strength in the Double Punch test for concrete.

  • PDF

무시멘트 첨가제를 활용한 상온 재활용 아스팔트 혼합물의 성능 분석 (Performance Evaluation of Cold Recycled Asphalt Mixtures with Asphalt Emulsion and Inorganic Additives)

  • 박창규;김경수;김원재;이현종
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.137-142
    • /
    • 2017
  • PURPOSES :The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP). METHODS : The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture. RESULTS :It was determined that NaOH solution mixed with $Na_2SiO_3$ in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test. CONCLUSIONS : The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.

보수재료로서 EVA 에멀젼과 고로슬래그 미분말 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장·접착특성 (Tensile and Adhesive Properties of Polymer Cement Mortar with EVA Emulsion, Blast-Furnace Slag and Fly Ash as a Repair Material)

  • 조영국
    • 대한건축학회논문집:구조계
    • /
    • 제35권11호
    • /
    • pp.147-154
    • /
    • 2019
  • The purpose of this study is to evaluate the effect of admixtures as blast-furnace slag(BF) and fly ash(FA) on tensile and adhesive properties of polymer cement mortar(PCM) with EVA emulsion. The test specimens are prepared with five polymer-cement ratio(P/C) and five admixture contents, and tested for tensile strength and adhesion in tension. From the test results, the tensile strength and adhesion in tension could be improved by an appropriate combination of P/C and admixture contents. In particular, the maximum of tensile strength of PCM with P/C 10% and BF content of 10% is 4.70MPa which is about 1.55 times higher than that of plain mortar, and about 1.22 times that of PCM that does not contain any mixture. The ratio of adhesion in tension to tensile strength of PCM with admixtures averaged 55.8%. It is also apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성 (Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil)

  • 서영교;최헌우
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가 (Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

하이브리드 강섬유로 보강된 UHPC의 파괴거동 (Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.223-234
    • /
    • 2016
  • 이 연구에서는 노치 도입 인장시편을 사용하여 직접인장강도 실험을 통해 UHPC의 파괴거동을 살펴보고, 강섬유 혼입률에 따른 UHPC의 초기균열강도와 인장강도를 제안하였다. 실험결과 UHPC와 초기균열강도와 인장강도, 그리고 파괴에너지 등은 강섬유 혼입률이 증가할수록 증가하는 것으로 나타났다. 균열선단에서의 응집응력은 Barenblatt의 가정을 사용하여 결정되었으며, 이를 토대로 변형경화 현상이 발생하는 강섬유 혼입률이 1% 이상인 UHPC의 최대응집응력을 예측할 수 있는 간편식을 제안하였다. 인장강도는 강섬유 혼입률과 압축강도의 함수로 제안되었으며, 파괴에너지는 인장강도의 함수로 제안되었다. 제안된 간편식들은 실험값과 비교적 잘 일치하였으며, 향후 압축강도가 140~170 MPa이고, 강섬유 혼입률이 2% 이하인 UHPC에 적용가능 할 것으로 판단된다.

Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향 (The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).