• Title/Summary/Keyword: tensile properties

Search Result 5,881, Processing Time 0.034 seconds

Mechanical Properties of SiC Particulate Reinforced Mg Matrix Composites Fabricated by Melt Stirring Method (용탕교반법에 의한 SiC 입자강화 Mg기 복합재료의 기계적 특성)

  • Lim, Suk-Won;Choh, Takao;Park, Young-Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.441-449
    • /
    • 1993
  • SiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effet of several factors on mechanical properties and the efficiency of melt stirring method from the viewpoint of these properties were investigated. The tensile strength increased and the elongation decreased with decrease of the particle size or the increase of the paticulate volume fraction for pure magnesium matrix and Mg-5%Zn alloy matrix composites. A longer stirring time improved the tensile strength of these composites. The tensile strength of Mg-5%Ca alloy matrix composites which shows no uniform paticulate distribution was a little lower than that of matrix alloy. Rapid solidification rate is preferred for the improved tensile strength of these composites. The pure magnesium matrix and Mg-5%Zn alloy matrix composites have tensile strength of about 400MPa. This value agrees with the tensile strength of some magnesium matrix composites fabricated by liquid infiltration method or powder metallurgy method at the same volume fraction of reinforcements of whisker or particle. Therefore, the melt stirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum (다공성 소결 순 Al에서 인장연성 변화에 관한 연구)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.

A Study on the High Temperature Tensile Property and the Characteristics of Residual Stress in Welds of High Strength Steels (고강도강재의 고온인장특성 및 용접시 잔류응력특징에 관한 연구)

  • 장경호;이진형;신영의
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.50-58
    • /
    • 2004
  • In this study, high temperature tensile properties of high strength steels(POSTEN60, POSTEN80) were investigated. The three-dimensional thermal elastic-plastic analyses were conducted to investigate the characteristics of welding residual stresses in welds of high strength steels on the basis of thermal and mechanical properites at high temperature obtained from the experiment. According to the results, high temperature tensile strength of POSTEN60 steel deteriorated slowly to 10$0^{\circ}C$. As the temperature went up, the tensile strength became better because of blue shortness, and it deteriorated radically after reaching to the maximum value around 30$0^{\circ}C$. For the POSTEN80 steel, high temperature tensile strength deteriorated slowly to 20$0^{\circ}C$. As the temperature went up the tensile strength became better and it deteriorated slowly to $600^{\circ}C$ after reached to the maximum value around 30$0^{\circ}C$. Strain of high strength steels at the elevated temperature increased radically after the mercury rose to $600^{\circ}C$. The strain hardening ratio of POSTEN60 steel was larger then that of POSTEN80 steel at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 40$0^{\circ}C$. And, in the welding of high strength steels, increasing tensile strength of the steel (POSTEN60

Influence of Weft's Cotton Count & Weave Construction on the Mechanical Properties & Hand of Cotton Woven Fabrics (위사번수와 조직이 면직물의 역학특성 및 태에 미치는 영향)

  • Bae, Jin-Hwa;Park, Jung-Whan;An, Seung-Kook
    • Fashion & Textile Research Journal
    • /
    • v.7 no.5
    • /
    • pp.553-559
    • /
    • 2005
  • Hand characteristics related with structural properties of fabrics have something to do with mechanical properties of fabric. In this study, the mechanical properties and hand characteristics have been analyzed according to fabric structural parameters such as the weave structure and the linear density of weft of cotton fabric. Mechanical properties have been used by KES-FB system which measures hand characteristics and mechanical properties of fabric. Linear density of weft, tensile, bending, and shear properties are decreasing with increasing weft linear density, and there is no considerable effects on compression and surface properties. In case of formability with weft linear density, B/W, 2HG/G, 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, $\sqrt{2HB/W}$, W/T except MMD/SMD, WC/T, and WC/W have been effected. There is a high correlation between the crimp, tightness, hand, formability and mechanical properties specially tensile linearity, bending, shear, and compression properties. The weft crimp influences the bending rigidity, shear properties, and the tightness which have effects on the tensile linearity, bending, shear, compression properties, hand, and formability.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt (고장력볼트 냉간압조용 비조질강 특성에 관한 연구)

  • Lee, Y.S.;Choi, J.M.;Hwang, B.K.;Chung, T.W.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

State of Art for Biaxial Tensile Test Systems (2축 인장 시험 방법에 관한 고찰)

  • Park, J.G.;Ahn, D.C.;Nam, J.B.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • This paper is a review of biaxial tensile test equipments and specimens. The stresses acting on a component in service are multiaxial in nature. Therefore, it is necessary to consider the mechanical properties of sheet materials not only under uniaxial but also under these multiaxial stress states. Biaxial testing of metal in industry becomes an important investigation tool for the evaluation of mechanical properties of sheet metals. In this paper, several types of biaxial tensile tests were reviewed, and their advantages and limitations were discussed.

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Determination of Deformation Behavior of the Al6060-T6 under high Strain Rate Tensile Loading Using SHPB Technique (SHPB 기법을 이용한 A16061-T6의 고속 인장 변형거동 규명)

  • Lee, Eok-Seop;Kim, Gwan-Hui;Hwang, Si-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3033-3039
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high stain rate loading conditions have been required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material properties under high strain rate loading condition. There have been many studies on the material behavior under high strain rate compressive loading compared to those under tensile loading. In this paper, mechanical properties of the aluminum alloy, Al6061-T6, under high strain rate tensile loading were determined using SHPB technique.