• Title/Summary/Keyword: tensile fracture

Search Result 1,417, Processing Time 0.027 seconds

An Experimental Study on the Fracture Strength of Steel Fiber Reinforced Concrete

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • In this thesis, fracture test was performed in order to investigate the fracture strength of SFRC(steel fiber reinforced concrete) structures. The relationship between the compressive force and strain value of SFRC specimens were observed under the compressive strength test. From the fracture test results, the relationship between percentage of fiber by volume, compressive strength, elastic modulus, and tensile strength of SFRC beams were studied, and the measured elastic modulus of SFRC were compared with the calculated elastic modulus by ACI committee 544.

Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가)

  • Woo Sung-Choong;Choi Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin (DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구)

  • Kwon, Woong;Lee, Minkyu;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

The Influence of Microstructures on the Change of Monotonic Tensile Fracture Mode in Al-Li-Cu-Zr Alloy with Ageing (Al-Li-Cu-Zr합금의 시효에 따른 인장파괴모드변화에 미치는 미세조직의 영향)

  • Chung, D.S.;Lee, S.J.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.212-218
    • /
    • 1996
  • To clarify the influence of precipitation microstructure and inclusion on the monotonic tensile fracture behaviors in 2090 alloy aged at $180^{\circ}C$, the detailed measurement of hardness, tensile strength, elongation and the observation of scanning electron micrography, transmision electron micrography have been carried out. The transgranular shear ductile fracture has been observed in specimen quenched after solution treatment at $500^{\circ}C$ for 45min. While the under-aged specimen was fractured in both transgranular shear ductile and intergranular fracture mode, the fracture mode of peak-aged and over-aged alloy was predominantly intergranular fracture. The fracture behavior of each ageing condition was influenced by the change of precipitation microstructural features. In the case of peak-aged and over-aged alloys, the coarse and heterogeneous slip band caused by both shearable nature of the ${\delta}^{\prime}(Al_3Li)$ precipitates and PFZ along the high angle grain boundary aid the localization of deformation, resulting in low energy intergranular fracture. It was also estimated that the fractured T-type intermetallic phases (inclusion) and the equilibrium ${\delta}$(AlLi) phases which were formed at grain boundaries palyed an important role in promoting intergranular fracture mode.

  • PDF

The microstructure and mechanical performance of high strength alloy steel X2M

  • Manigandan, K.;Srivatsan, T.S.;Freborg, A.M.;Quick, T.;Sastry, S.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.283-295
    • /
    • 2014
  • In this paper, the microstructure, hardness, tensile deformation and fracture behavior of high strength alloy steel X2M is presented anddiscussed. The influence of both composition and processing on microstructure of the as-provided material and resultant influence of microstructure, as a function of orientation, on hardness, tensile properties and final fracture behavior is highlighted. The macroscopic mode and intrinsic microscopic features that result from fracture of the steel specimens machined from the two orientations, longitudinal and transverse is discussed. The intrinsic microscopic mechanisms governing quasi-static deformation and final fracture behavior of this high strength steel are outlined in light of the effects oftest specimen orientation, intrinsic microstructural effects and nature of loading.

Fracture Morphology of Degraded Historic Silk Fibers Using SEM (SEM을 이용한 출토 견섬유의 손상 형태에 관한 연구)

  • Bae, Soon Wha;Lee, Mee Sik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.5
    • /
    • pp.667-675
    • /
    • 2013
  • After analyzing excavated $17-18^{th}$ century silk fibers through a scanning electron microscopy, we discovered seven different kinds of fracture morphology. Using Morton & Hearle fiber fracture morphology, we classified the findings into four different categories. Type I is tensile failure resulting from brittle fracture, granular fracture, and ductile fracture. Type II is fatigue failure caused by tensile fatigue, flex fatigue, and axial split (fibrillation). Type III is bacterial deterioration discovered only in excavated artifacts. Type IV is a combination of the three above. Humid underground conditions and the infiltration of bacteria caused the fibers to swell and weaken its interfibrillar cohesion. Fractures occur when drying and processing an excavated artifact that is already in a fragile condition. Therefore, one must minimize damage through a prompt cleaning process and make sure that the least possible force is exerted on the fabric during any treatment for repair and exhibition.

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers (하이브리드 강섬유로 보강된 UHPC의 파괴거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Fracture Characteristics of the Resistance Spot Welded Joints by Acoustic Emission (음향방출법에 의한 저항 점용접부의 파괴특성에 대한 연구)

  • Jo, Dae-Hee;Rhee, Zhang-Kyu;Park, Sung-Oan;Kim, Bong-Gag;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.14-22
    • /
    • 2007
  • In this paper, the acoustic emission(AE) behaviors were investigated with single-and 2-spot resistance spot welded SPCC specimens. Test specimens were welded horizontally and/or vertically according to the rolling direction of base netal in 2-spot welding. In the case of 2-spot welding, when tensile-shear test has below amplitudes: crack initiation $50{\sim}60dB;$ tear fracture $40{\sim}50dB$. And when cross tensile test has below amplitudes: early stage $75{\sim}85dB;$ yielding point $65{\sim}75dB;$ post yielding $40{\sim}60dB;$ plug fracture $70{\sim}80dB\;or\;90{\sim}100dB$. Also, from the b-value that is slope of AE amplitude, we knew that there are lots of low amplitudes if b-value is big(i.e., tensile-shear $specimen{\rightarrow}tear$ fracture or shear fracture), and there are lots of high amplitudes if b-value is small(i.e.. cross tensile $specimen{\rightarrow}plug$ fracture). As the results of fiacture mechanism analyses through AE amplitude distributions, change of the b-value represented fracture patterns of materials. Correspondingly, low amplitude signals appeared in crack initiation, and high amplitude signals appeared in base metal fracture. We confirmed that these amplitude distributions represented the change or degradation of materials.