• Title/Summary/Keyword: tensile creep

Search Result 232, Processing Time 0.021 seconds

Tensile Creep Model of Concrete Incorporation the Effects of Humidity and Time at Loading (재하시 재령과 습도의 영향을 고려한 콘크리트의 합리적인 인장크리프 모델)

  • 이형준;오병환
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.3-11
    • /
    • 1999
  • The creep characteristics of concrete under tensile stress has been usually assumed to have the same characteristics as that under compressive stress in the time-dependent analysis of concrete structures. However, it appears from the recent experimental studies that tensile creep behavior is much different from compressive one. In particular, high sustaining tensile stress may cause time-dependent cracking and thus lead to tensile failure. It is, therefore, necessary to model the tensile creep behavior accurately for realistic time-dependent analysis of concrete structures. The present paper to have been focused to suggested more realistic model for the tensile creep behavior of concrete. The models are compared with tensile creep test data available in the literature. The proposed model may allow more refined analysis of concrete structures under time-dependent loading.

Time-Dependent Analysis of Reinforced and Prestressed Concrete Structures Considering Tensile Creep of Concrete (인장크리프모델을 고려한 철근 및 프리스트레스트 콘크리트 구조의 시간의존적 해석)

  • 오병환;이형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.473-479
    • /
    • 1996
  • Until now, we assumed in the time-dependent analysis of concrete structure that tensile creep has same characteristics as compressive creep has. But, in according to results of researches, it appears that tensile creep is different from compressive creep in quantity and in mechanics because tensile creep is affected significantly by micro cracking. The test results indicate that the creep behavior of concrete in compression and tension is rather different. The test data shows that the amount of creep under tensile loading is larger than that under compressive loading. In this paper, a realistic tensile creep model is suggested and incorporated in the formulation. In order to get more accurate results of time-dependent analysis. The present study indicates that the long-term deflection of concrete structures under realistic tensile creep model is somewhat larger than that under ordinary compressive creep model.

  • PDF

Tensile Creep Properties of Concrete under Restrained Shrinkage (구속수축에 의한 콘크리트 인장크리프 특성)

  • Choi, Hoon-Jae;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.28-29
    • /
    • 2016
  • By Testing restrained shrinkage, it is possible to estimating the cracking tendency of concrete such as time to cracking, tensile stress and tensile creep. In this study, tensile creep properties of concrete under restraint shrinkage were investigation through comparison of specimens that JIS and AASHTO proposed. As a results, tensile creep strains in concrete ring specimens were 15% higher than those in uniaxial specimens.

  • PDF

Experimental Study on Tensile Creep of Coarse Recycled Aggregate Concrete

  • Seo, Tae-Seok;Lee, Moon-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.337-343
    • /
    • 2015
  • Previous studies have shown that the drying shrinkage of recycled aggregate concrete (RAC) is greater than that of natural aggregate concrete (NAC). Drying shrinkage is the fundamental reason for the cracking of concrete, and tensile creep caused by the restraint of drying shrinkage plays a significant role in the cracking because it can relieve the tensile stress and results in the delay of cracking occurrence. However, up till now, all research has been focusing on the compressive creep of RAC. Therefore, in this study, a uniaxial restrained shrinkage cracking test was executed to investigate the tensile creep properties caused by the restraint of drying shrinkage of RAC. The mechanical properties, such as compressive strength, tensile splitting strength, and Young's modulus of RAC were also investigated in this study. The results confirmed that the tensile creep of RAC caused by the restraint of shrinkage was about 20-30 % larger than that of NAC.

Tensile and Compressive Creep Behaviors of Amorphous Steel Fiber-Reinforced Concrete

  • Truong, Gia Toai;Choi, Kyoung-Kyu;Choi, Oan-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.197-203
    • /
    • 2013
  • In this study, the creep behaviors of amorphous steel fiber-reinforced concrete were investigated. Two different types of tests were carried out to evaluate the effect of amorphous steel fibers on the creep of concrete: compressive creep test and tensile creep test. Fiber volume fractions used in the test were 0.2% and 0.4% for tensile specimens, and 0.2% and 0.3% for compressive specimens. Based on the test results, the addition of fiber volume fraction of 0.2% into concrete could significantly reduce both compressive and tensile creep.

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.

A Study on the Life Prediction Method using Artificial Neural Network under Creep-Fatigue Interaction (인공 신경망을 이용한 크리프-피로 상호작용시 수명예측기법에 관한 연구)

  • 권영일;김범준;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • The effect of tensile hold time on the creep-fatigue interaction in AISI 316 stainless steel was investigated. To study the fatigue characteristics of the material, strain controlled low cycle fatigue(LCF) tests were carried out under the continuous triangular waveshape with three different total strain ranges of 1.0%, 1.5% and 2.0%. To study the creep-fatigue interaction, 5min., 10min., and 30min. of tensile hold times were applied to the continuous triangular waveshape with the same three total strain ranges. The creep-fatigue life was found to be the longest when the 5min. tensile hold time was applied and was the shortest when the 30min. tensile hold time was applied. The cause fur the shortest creep-fatigue life under the 30min. tensile hold time is believed to be the effect of the increased creep damage per cycle as the hold time increases. The creep-fatigue life prediction using artificial neural network(ANN) showed closer prediction values to the experimental values than by the modified Coffin-Manson method.

  • PDF

The Creep Behavior of Austentic SUS 27 by Moire Method (모아레法 을 活용 比較한 오우스테나이트系 SUS 27 의 크리이프擧動)

  • 옹장우;이훈주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 1983
  • This study practiced to observe the creep behavior at specific temperature on Austentic SUB 27 stainless steel by Moire method. The results obtained from this study are summarized as follows; In tensile experiment, tensile strength and yielding strength decrease as the temperature increases. Yielding strength is equivalent to 60-70% of tensile strength. Reduction of Area and Elongation show minimum values at 300.deg. C. The results of Moire method using Moire heating resisting grid coincide with LVDT result. Therefor, It is proved that the Moire method has great merit in strain measurement of a creep behavior. In homologous at temp. 0.2 or less, creep behavior is very small amount. But, in more than 0.3, creep behavior is very active. Creep rate increase as temperature increase and creep rate is proportional to .alpha. values of experimental equation.

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.

DETERMINATION OF RUPTURE TIME AND STRAIN RATE IN CREEP BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.74-79
    • /
    • 1994
  • The log-log presentation of stress versus Larson-Miller parameter is obtained by uniaxial tensile test instead of the long time creep test. The used material for example calculations is SUS304 stainless steel. The temperature of the uniaxial tensile test can be determined by the Larson-Miller parameter of the design stress and the 0.1hr's rupture time of the uniaxial tensile test. The rupture time at the design temperature and stress can be determined by the Larson-Miller parameter of the stress. The average creep rate is the total deformation of the tensile test divided by the rupture time at the design stress and temperature. The liner trend and the order of the data of the average creep rate by this method is almost same as that of experimental results.

  • PDF