• Title/Summary/Keyword: tensile and tear strength

Search Result 168, Processing Time 0.029 seconds

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF

Study on the Characteristics of the Absorbency Silicone by Super Absorbent Polymers (고흡수성 수지를 이용한 흡수성 실리콘의 특성 연구)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Silicone resin has no water-absorbing function because it is a strong hydrophobic polymer. However, addition of super absorbent polymer gives much better absorbency than that of conventional silicone resin. In this study, we developed novel silicone materials with water-absorbing function by choosing three types of amorphous acrylic super absorbent polymers with different particle sizes, determining the mixing ratio of the three polymers and applying the mixtures into two-component type silicone material for medical purpose. The change in the mechanical properties such as tensile strength, tear strength, compressive strength and hardness was investigated by varying the particle size and content ratio of the added super absorbent polymers while preparing the silicone resins. The absorbency of the silicone resins was measured over time. Additionally, the particle shape of the super absorbent polymers as well as the distribution within the silicone resin was observed using an optical microscope.

Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

  • Gong, Pin;Ni, Minxuan;Chai, Hao;Chen, Feida;Tang, Xiaobin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.470-477
    • /
    • 2018
  • With a highly functional methyl vinyl silicone rubber (VMQ) matrix and filler materials of $B_4C$, PbO, and benzophenone (BP) and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were $323.6^{\circ}C$ and $335.3^{\circ}C$, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am-Be neutron source. The transmission of ${\gamma}$-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively.

A Study on the Vulcanization System and Two-Step Foaming Properties for Natural Rubber Foam (천연고무의 가황시스템 및 성형공정에 따른 2단 발포 특성 연구)

  • Sunhee Lee;Ye-Eun Park;Dikshita Chowdhury
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • In this study, we investigated for natural rubber foam to replace petrochemical-based neoprene foam. Experiments were conducted on vulcanization system and 2-step foaming process of natural rubber. The vulcanization system were EV(Efficient Vulcanization Cure), Semi-EV(Semi-Efficient Vulcanization Cure) and CV(Conventional Vulcanization Cure). In the 2-step foaming process, first molding temperature was 140℃, times were 15, 20, 25, and 30minutes, and the second molding temperature was 160℃, the times 5, 10, 15, and 20minutes. The cure and viscosity characterization were evaluated by oscillating disc rheometer (ODR) and mooney viscosmeter. Various mechanical characteristics, including hardness, tensile strength, elongation at the point of rupture, and tear strength, were quantified. Subsequently, an assessment of alterations in these mechanical attributes was conducted post-immersion in a NaCl solution. In addition degree of volume change was measured after immersing the NR foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. And expansion ratio and shrinkage ratio of NR foam were evaluated for 28 days. As a result the EV vulcanization system showed the least change in physical properties before and after salt water immersion, and the lowest shrinkage ratio for 28 days. In addition it was confirmed that the 2-step foaming optimum condition differed depending on the appropriate vulcanization condition.

The Comparison of Deinkability of Domestic, Japanese and Australian Old Newsprint (열화기간에 따른 국내 및 수입 신문고지의 탈묵성 비교)

  • Kim, Yong-Sek;An, Byoung-Jun;Paik, Ki-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.299-303
    • /
    • 1999
  • In this paper, to investigate the deinkability of domestic and Australian old newsprint according to aging time, two types of newsprint printed with commercial offset ink in domestic(K; Korean newsprint, C; Canadian newsprint), Japanase(J) and Australian(A) old newsprint were aged naturally for 10, 30, 90, 180 days, and then yield, brightness, fiber length, and physical properties (tensile index, tear index, burst index) were evaluated according to aging time. As the aging time increased, the yield and brightness of respective samples decreased. The brightness and yield were decreased in the order of A, K, J and C. The brightness and strength of newsprint varied according to the ink formulation and kinds of pulp and wood. The decreasing order of strength is subsequently J, K, C and A.

  • PDF

A Study on the Effect of Oyster Shell Surfase Modified with Rare Earth Coupling Agent on Eco-Friendly Bio-EPDM Foam (Rare earth coupling agent로 표면개질된 Oyster shell이 친환경 Bio-EPDM 발포체에 미치는 영향 연구)

  • Seo, Eun Ho;Lim, Sung Wook;Park, Kyung Soon;Park, Eun Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.317-326
    • /
    • 2021
  • In this study, we investigated for Bio-EPDM foam with oyster shell surface modified earth coupling agent. Experiments were carried out to confirm the bio-EPDM/Oyster shell foam applying content of earth coupling agent. The cure characterization were evaluated by measuring the mooney viscosity and oscillating disc rheometer (ODR). Mechanical properties such as hardness, tensile strength, elogation at break and tear strength were measured, and changes of mechanical properties were also evaluated after immersion in NaCl solution. In addition degree of volume change was measured after immersing the Bio-EPDM foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. To evaluate the low-temperature characteristics of Bio-EPDM/Oyster shell, the glass transition temperature was measured using Differential Scanning Calorimeter (DSC). As a result as the content of the earth coupling agent increased up to 3phr, the crosslinking density and mooney viscosity increased, and the mechanical properties and low-temperature permanent compression set improved, but from 4phr, it was rather decreased. The change in the glass transition temperature was insignificant, and the foam cell appeared to be uniform when the earth coupling agent was applied.

Environmentally Friendly Moisture-proof Paper with Superior Moisture Proof Property (I) -Properties of Moisture Proof Chemicals- (방습 효과가 우수한 환경친화적 방습지(제1보) -방습제의 특성-)

  • 유재국;조욱기;이명구
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2001
  • The function of the moisture-proof paper is to prevent moisture from adsorbing into the packed goods. Water-vapor transmission rate of the moisture-proof paper should be less than 100g/$m^2$.24hr and the optimum rate would be less than 50g/$m^2$.24hr. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. The purpose of this paper was to make moisture-proof paper using the mixture of SB latex and wax emulsion which was recyclable and environmentally friendly. Water vapor transmission rate showed less than 50g/$m^2$.24hr in mixture ratio of 85:15, 87:13, 90:10. Especially the mixture ratio of 87:13 showed the most favorable water-vapor transmission rate. However, the moisture-proof layer was destroyed slightly by folding in packing. It has been observed that there was no close relationship between water-vapor transmission rate of the moisture-proof paper and grammage of the base paper, but the density of base paper had influenced on water vapor transmission rate. It was also observed that the moisture-proof paper could be recycled. The moisture-proof paper was similar to base paper in degree of the pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particles which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of both moisture-proof paper and base paper after pulping were measured to examine the fiber bonding, and no significant difference in physical properties was observed.

  • PDF

Heat and Crack Resistance of Natural Rubber(NR) Compounds According to the Type of Antioxidants (산화방지제 종류에 따른 천연고무 배합물의 내열성 및 내크랙성)

  • Roh, Jong-Dae;Shin, Jun-Geun;Kim, Jin-Tae;Hur, Jae-Young;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 1999
  • In this study, heat and crack resistance of natural rubber (NR) compounds was evaluated. To prevent the effects of the crosslinking system, a conventional vulcanization system was selected, where the accelerator/sulfur ratio was fixed to 0.25. Vulcanizates containing phenylenediamine showed high tensile strength and tear strength compared to other vulcanizates because phenylenediamine can cause additional crosslinking and high dispersion In the vulcanizates. In the pure shear test, vulcanizates containing phenylenediamine showed an excellent tearing energy which was due to the irregular crack path, and showed excellent heat and crack resistance which was also due to the good dispersity of antioxidant and additional crosslinks in the rubbber vulcanizates.

  • PDF

Cell Opening of High Resilience Polyurethane Foam I. Concentration Effect of Polyether Type Cell Opener (고탄성 폴리우레탄 발포체의 기포개방 I. 폴리에테르형 기포개방제의 농도 영향)

  • 송기천;이상목;이동호
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.679-690
    • /
    • 2001
  • High resilience PU foams were prepared with polyether type cell opener. The influences of cell opener concentration on the kinetics, rheology, structural stability morphology and open cell content of the obtained foam were investigated and the role of cell opener during cell opening was determined. And mechanical properties as a function of cell opener concentration were studied. It was observed that urea formation reaction was delayed due to high hydrophilicity of cell opener The decrease of viscosity and the increase of tan $\delta$ were confirmed with increasing cell opener concentration so that the resulted foam had low structural stability and high open cell content. The deterioration of matrix and uniform dispersion of hydrogen-bonded urea in matrix with cell opener concentration was revealed by SEM analysis. As a result, elastic properties of the foam matrix were decreased due to high hydrophilicity of cell opener during the preparation of high resilience polyurethane foam and foam with high open cell content resulted. Hardness, tensile strength, tear strength, elongation of foam were decreased with increasing cell opener concentration.

  • PDF

Effect of Processing Agent on Physical Properties of Leather (혁의 물성에 미치는 가공제 첨가 효과)

  • Lee, Jong-Seok;Seo, Gyo-Taeg;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.934-938
    • /
    • 1999
  • Effect of processing agents on physical properties on aniline-type leathers such as wet blue, crust leather, and finished leather has been investigated. These leathers were manufactured from pelts obtained by the chemical, the enzyme, and the bio-tech treatment. There was no difference in physical properties between crust leather and finished leather. All finished leathers with the three treatments were satisfied with the Korean Industrial Standard like a tensile strength of $1.2kg_f/mm^2$, an elongation of 30%, a tear strength of $3.0kg_f/mm$, a grain crack weight of $15kg_f$, and a $Cr_2O_3$ content of 2.5%. In peculiar, application of the bio-tech treatment gave the best leather. This improvement of physical quality could be explained by the results of SEM and image analyser.

  • PDF