• Title/Summary/Keyword: tensile Strength

Search Result 7,677, Processing Time 0.032 seconds

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Effect of HTT on Bending and Tensile Properties of 2D C/C Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.234-242
    • /
    • 2005
  • Bending and tensile properties of 2D cross-ply C/C composites with processing heat treatment temperature (HTT) are evaluated. C/C composites used are made from two types of PAN based T700 and M40 carbon fibers with phenolic resin as carbon matrix precursor. Both the types of composites are heat treated at different temperatures (ranging from 750 to $2800^{\circ}C$) and characterized for bending and tensile properties. It is observed that, real density and open porosity increases with HTT, however, bulk density does show remarkable change. The real density and open porosity are higher in case T-700 carbon fiber composites at $2800^{\circ}C$, even though the density of M40 carbon fiber is higher. Bending strength is considerably greater than tensile strength through out the processing HTT due to the different mode of fracture. The bending and tensile strength decreases in both composites on $1000^{\circ}C$ which attributed to decrease in bulk density, thereafter with increase in HTT, bending and tensile strength increases. The maximum strength is in T700 fiber based composites at HTT $1500^{\circ}C$ and in M40 fiber based composites at HTT $2500^{\circ}C$. After attending the maximum value of strength in both types of composite at deflection HTT, after that strength decreases continuously. Decrease in strength is due to the degradation of fiber properties and in-situ fiber damages in the composite. The maximum carbon fiber strength realization in C/C composites is possible at a temperature that is same of fiber HTT. It has been found first time that the bending strength more or less 1.55 times higher in T700 fiber composites and in M40 fiber composites bending strength is 1.2 times higher than that of tensile strength of C/C composites.

  • PDF

Prediction of Tensile Strength of Wet Sand (II) : Validation (습윤 모래에서 인장강도의 예측 (II) : 검증)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.37-44
    • /
    • 2008
  • At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.

Evaluation of CFS Tensile Strength Reduction Factor for Bending Analysis of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트 보강보 휨해석에 영향을 미치는 섬유시트 인장강도 감소계수 평가)

  • 윤진섭;이우철;정진환;김성도;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.359-362
    • /
    • 2003
  • Carbon fiber sheet is attractive due to its good tensile strength, resistance to corrosion, and low weight. The strengthening of concrete structures with externally bonded carbon fiber sheets is increasingly being used for repair and rehabilitation of existing structures. However CFS strengthened beams break down under the service loads. As rupture strain is not reached ultimate value, reduction of the tensile strength is recommended. This study evaluate CFS tensile strength reduction factor which is required to analyze bending moment.

  • PDF

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

Effects of Length and Grade on In-grade Tensile Strength and Stiffness Properties of Radiata Pine Timber

  • Tsehaye, Addis;Buchanan, A.H.;Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.16-23
    • /
    • 1998
  • This paper examines the effects of specimen length and grade on the strength and stiffness properties of structural timber of radiata pine. The tensile strength and modulus of elasticity of 1,902 machine-graded boards with 3.15- and 1.62-m clear span lengths, were determined using a horizontal tension test machine. The mean failure and characteristic stress values for tensile strength show an extremely high dependency on test specimen length. The mean and characteristic values of both modulus of elasticity and tensile strength show significant dependency on machine stress grades.

  • PDF

Variation of Welded-Joint Tensile Strength of GMA Welded Accelerated-Cooled Steel (가속냉각강 GMAW 용접이음부의 강도 변화)

  • 방국숙;정성욱
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.83-88
    • /
    • 2000
  • Variation of welded-joint hardness and tensile strength of a accelerated-cooled fine-grained ferritic-pearlitic steel with heat input was investigated. In a weld heat-affected zone, a softened zone was formed and it had lower hardness than that of a base metal. While the width of a softened zone increased continuously with an increase of heat input up to 100kJ/cm. the minimum hardness in a softned zone was almost constant after a continuos decrease up to 60KJ/cm. Because of a softened zone, the welded-joint was fractured in the HAZ and its maximum reduction of tensile strength was about 20%. Measured welded-joint tensile strength and calculated minimum tensile strength in a welded-joint was almost same, which means that the plastic restraint of a softened zone did not occur in this experiment. It is believed that as a softened zone width-to-specimen thickness ratio is as high as 2~6 in this experiment, the plastic restraint effect does not occur. Theoretical analysis shows that the plastic restraint effect occurs only when the ratio is below 0.5.

  • PDF

Optimum Design of the Friction Stir Welding Process on A6005 Extruded Alloy for Railway Vehicles to Improve Mechanical Properties (마찰 교반 용접된 철도 차량용 A6005 압출재의 기계적 성능 향상을 위한 최적 공법 설계)

  • Won, Si-Tea;Kim, Weon-Kyong
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.81-87
    • /
    • 2009
  • Recently, extruded aluminium-alloy panels have been used in the car bodies for the purpose of the light-weight of railway vehicles and FSW(Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. This paper presents the optimum design of the FSW process on A6005 extruded alloy for railway vehicles to improve its mechanical properties. Rotational speed, welding speed and tilting angle of the tool tip were chosen as design parameters. Three objective functions were determined; maximizing the tensile strength, minimizing the hardness and maximizing the difference between the normalized tensile strength and hardness. The tensile tests and the hardness tests for fifteen FSW experiments were carried out according to the central composite design table. Recursive model functions on three characteristic values, such as the tensile strength, the hardness difference(${\Delta}Hv$) and the difference of normalized tensile strength and ${\Delta}Hv$, were estimated according to the classical response surface analysis methodology. The reliability of each recursive function was verified by F-test using the analysis of variance table. Sensitivity analysis on each characteristic value was done. Finally, the optimum values of three design parameters were found using Sequential Quadratic Programming algorithm.