• Title/Summary/Keyword: tendon profile

Search Result 18, Processing Time 0.034 seconds

Morphometry of the patellar tendon using a simple tracing method: a gold standard for anterior cruciate ligament reconstruction

  • Sabiha Latiff;Oladiran Ibukunolu Olateju
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • The anterior cruciate ligament (ACL) is mostly damaged in sporting activities. To reconstruct the damaged ACL, a patellar tendon (PT) is often the most preferred graft due to its fast healing and bone integration i.e. bone-patellar tendon-bone graft. Suitability of the PT often depends on the morphometric profile of the tendon. This study reported on the harvestable surface area (SA) of the tendon using a simple tracing method. The PT of 79 adult formalin-fixed cadavers of South Africans of European Ancestry were dissected, and the margins of the PT were traced on a wax paper before the tracings were scanned. The SA, straight proximal width (SPW), curved proximal width (CPW), straight distal width (SDW), curved distal width (CDW) and length of tendon (LOT) from the digitized image of the PT was measured. In addition, the length of the lower limbs was measured to normalize the measurements. The results showed no significant side differences, and the measurements were not sexually dimorphic. A strong correlation was reported for SA vs. LOT, SPW vs. CPW and SDW vs. CDW for both sexes and sides. The presented morphological profile provides additional information on the usability of the graft and with respect to healing and recovery.

An Experiment of Flexural Behavior for the Prestressed Concrete Beams with Partially Bonded External Tendons (외부 부분 부착 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Lee, Sang-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.141-147
    • /
    • 2012
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. The purposes of the present paper are therefore to improve the mechanical behavior of external unbonded tendon by using partially bonded external tendon and to evaluate the flexural behavior of partially bonded external tendon by the flexural member experiment. From the experimental results, before flexural cracking, there was no difference between external unbonded, partially bonded and bonded tendons. However, after cracking, yielding load of reinforcement, ultimate load, and tendon stress were increased in the sequence of external unbonded, partially bonded and bonded tendon members. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations. So the newly proposed equation will be needed including the consideration of tendon profile, tendon bonded type, and so on. The proposed partially bonded external tendon in this paper will be a effective basis for the evaluation of external tendons in construction and design.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Optimum Design Algorithms for PSC Box-Girder Bridges Using a Reduced Basis Technique (기저함수 감소기법을 이용한 프리스트레스트 콘크리트 박스거더교의 최적설계 알고리즘)

  • 조효남;민대홍;김환기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.235-242
    • /
    • 2001
  • An optimization algoriam for the optimum design of prestressed concrete (PSC) box girder bridges is proposed in this paper. In order to optimize the tendon profile efficiently, a reduced basis technique is introduced. The optimization algorithm which includes the tendon profile, tendon size and concrete dimensions optimization problem of the PSC box girder bridges is verified on the Genetic algorikhm (GA) from the numerical examples. it may be positively stated that the optimum design of the PSC box girder bridges based on the new approach proposed in this study will lead to more rational and economical design compared with the currently available designs.

  • PDF

A Study of the Tendon Profile of a PSC Continuous Beam Able to Resist the Negative Bending Moment of Continuous Intergirders (거더 연속부의 부모멘트 제어에 효과적인 PSC 연속보의 텐던 배치에 관한 연구)

  • Kim, Eui Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • The problems associated with the continuous method of a domestically improved prestressed concrete (PSC) girder and the bending moment of a continuous tendon were studied. Based on the results, a continuous tendon model was proposed that can resist the negative bending moment of an intergirder. This model lowers the anchorage of the continuous tendon as far as possible under the girder, and extends the tendon section arranged under the girder. This method reduces the PS's bending moment in the middle of the span, but maximizes it in the intergirder. This continuous tendon model can offer a suitable method for continuity before manufacturing a composite, which requires a higher design bending moment in the intergirder than in the middle of the span.

Refractory Achilles Tendinopathy and Multiple Pain on the Tendon and Tendon Attachment Site of the Foot Related to Intermittent Levofloxacin Usage: A Case Report (간헐적 Levofloxacin 약제 사용과 관련된 난치성 아킬레스건병증과 족부의 다발성 건 및 건 부착부 통증: 증례 보고)

  • Seung Jun Park;Jin Soo Suh;Jun Young Choi
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.3
    • /
    • pp.103-107
    • /
    • 2023
  • Quinolone antibiotics are frequently prescribed for suspected respiratory or urinary tract infections because of their effectiveness and generally perceived safety profile. On the other hand, some studies have raised concerns regarding the potential association between quinolone use and Achilles tendinopathy or tendon rupture. There is a lack of reports on the link between quinolone use and multiple tendon and tendon attachment site pain in the foot and ankle joints; hence, this study examined this issue further. This paper presents a case report of a patient with persistent Achilles tendinopathy and multiple tendon and tendon attachment site pain in the foot who did not respond adequately to conservative treatments. In particular, the discontinuation of quinolone use resulted in favorable clinical outcomes. This report offers valuable insights into the potential risks associated with quinolone antibiotics and highlights the importance of vigilance when managing patients with tendon-related complaints. A comprehensive review of the relevant literature is also presented to contextualize these findings.

Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.197-208
    • /
    • 1995
  • The prestressed concrete continuous members with unbonded tendons were investigated while comparing the experimental data with the analytical results. The comparison was carried out with the program TAPS which can take into account the unbonded tendon effects. The subjects that were interested included the load-deflection response, the design equations for the tendon stress at failure, the effects of bonded reinforcements, the effects of span-depth ratio, the effects of loading type. In this paper, contiriuous prestressed concrete members with unbonded ten dons were investigated. Of twelve tests with continuous members, six were two-span beams and six were three span one-way slats. Analytical results were compared favorably with experimental data and disclosed that the tendon stress at flexural failure is the function of the amount of bonded reinforcements, the loading types and patterns, and the tendon profile.

Multi-level Optimization using Reduced Basis Technique for Prestressed Concrete Box Girders (기저함수 감소기법을 이용한 프리스트레스트 콘크리트 박스거더의 다단계 최적설계)

  • 조효남;민대홍;김환기;정봉교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.827-832
    • /
    • 2001
  • A multi-level optimum design algorithm for prestressed concrete (PSC) box girders is proposed in this paper. To save the numerical efforts, a multi-level optimization technique using model coordination method that separately utilizes both tendon profile design and section design is incorporated. And also, a reduced basis technique for the efficient tendon profile optimization is proposed in this paper. From the numerical investigations, it may be positively stated that the optimum design of PSC box girder based on the new approach proposed in this study will lead to more rational and economical design compared with the currently available designs.

  • PDF

Behaviour of Truss Bridges by Using the Post-tensioning (후긴장을 이용한 트러스의 성능 향상 평가)

  • Jeung, Bae-Keun;Han, Kyung-Bong;Eom, Jun-Sik;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.247-261
    • /
    • 2003
  • The technique of posttensioning has been used successfully to improve the performance of existing concrete structures. However, very few applications of this technique can be found in steel structures. Posttensioning by means of high strength cable or bar can be used to effectively increase the working load capacity of Truss Bridges. The benefits of posttensioning trusses can be achieved in strengthening of existing structures as well as in the design of new structures. In this paper, the elastic behavior of posttensioned trusses with straight and draped tendon profiles is examined. For the analysis of posttensioned trusses in the elastic range of behavior, two methods are presented, namely, the flexibility method and the mixed-method, i.e., a combination of the stiffness and flexibility methods. Using the presented methods, the effects of design variables such as the tendon profile, truss type, prestress force, and tendon eccentricity on the working load and deflection of trusses are studied. The results show that the allowable load of truss increases proportionally with increase in prestress force and eccentricity. Posttesioning enlarges the elastic range, increases redundancy, and reduces deflection and member stresses. Thus, the remaining life of a truss bridge can be increased relatively inexpensively.

A Study on the Estimation of Prestress Losses in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 프리스트레스 손실 추정에 관한 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan;Kim, Ji-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • This paper aims at estimating instantaneous prestress losses by measuring the actual prestress forces in prestressed concrete (PSC) box girder bridges. Measurement were taken to study initial prestress losses such as friction losses and slip losses. A new strain gauge system was developed to measure strains in internal tendons. The system was installed on a total of 20 tendons in a PSC box girder bridges. The variation of prestress forces were monitored during prestressing tendon and after prestress transfer. The prestress losses are also calculated including friction losses and slip losses. The measured data were compared with the theoretical values. The result shows that the measured prestress forces agree well with the theoretical values. It is shown that prestress force of each strand in the same tendon is a bit different. This study also shows that prestress losses of continuity tendons during prestress transfer are significantly different each other, which results from the variety of buttress location and tendon profile. The present study provides realistic information on the estimation of actual prestress forces and losses in PSC box girder bridges.

  • PDF