• Title/Summary/Keyword: temporal variability

Search Result 390, Processing Time 0.027 seconds

Analysis on the Spatial-temporal Variation of Surface-groundwater Interaction on the Watershed Basis (유역단위 지표수-지하수 상호작용의 시공간적 변동분석)

  • Kim, Nam-Won;Yoo, Sang-Yeon;Chung, Il-Moon;Lee, Jeong-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • The characteristics, intensity and direction of groundwater.surface water interactions are controlled by groundwater head gradients, hydraulic conductivity and by the riverbed geometry. As a result of the spatial heterogeneity of these factors and the subsequent variability of the impact of these interaction processes, the water balance is also characterized by highly variable spatial patterns and temporal dynamics. However, spatially detailed studies concerning the spatio-temporal variability of the extent and intensity of surface-groundwater interactions have been limited to the investigation of cross-sections or small stream reaches. Thus, the extensive study on the watershed based interaction between surface water and groundwater is to be analyzed. In this study, the intensity and the spatial extent of interactions along the stream were found by using integrated SWAT-MODFLOW model. This integrated modeling approach was applied to Anyangcheon watershed in Korea. The effluent stream characteristics were found in the watershed, namely, baseflow was annually discharged except heavy rainy periods. The intensity and the spatial extent of surface-groundwater interactions in different sub-watersheds were found on a daily basis. The influential extent of surface-groundwater interaction become larger as the watershed elevations are lower.

Propagation Loss Variability due to Hourly Variations of Underwater Sound Speed profiles in the Korea Strait (대한해협에서 수중음속 구조의 단기변화에 의한 전파손실의 변화정도)

  • Na, Youn-Nam;Shim, Tae-Bo;Kim , Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.5-13
    • /
    • 1995
  • In order to estimate the variability of the wave propagation loss (PL) du e to hourly variations of the sound speed profiles (SSPs), we conducted oceanographic measurements every hour for 39 hours in October 1993 in the Korea Strait. Currents and meteorological data were measured simultaneously to examine the causes of the temporal variations of temperatures. During the experiment, the temporal variations of temperatures in the surface layer highly depend on the water mass transport from adjacent seas. The PL for low frequency (75-300 Hz) is calculated using the parabolic equation scheme and averaged over the whole water depth. The hourly variation of the SSP may cause a PL difference of up to 10 dB over a 30-50 km range. The variability of PL, represented by standard deviation for the 39 SSPs, is as large as 3 dB over a 50 km range.

  • PDF

Effect of the Confusion Level of Dual-Tasks Using a Smartphone on the Gait of Subjects with Chronic Ankle Instability While Walking (보행 중 스마트폰을 이용한 이중과제의 혼란수준이 만성 발목불안정성 성인의 보행에 미치는 영향)

  • Choi, Woo-Sung;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.99-108
    • /
    • 2020
  • PURPOSE: This study examined the effects of the confusion level in performing dual tasks using smartphones while walking in subjects with chronic ankle instability (CAI). METHODS: Twenty subjects with CAI and 20 healthy subjects participated in the study. The spatial, temporal, spatial-temporal, and variability gait parameters were measured using GAITRite under four different conditions: general gait, web surfing during gait, texting during gait, and gaming during gait. Two-way repeated-measures analysis of variance was used to analyze the interaction according to the group (2) and confusion level in dual-tasks (4). One-way repeated-measures analysis of variance was used to compare the changes within the group according to the confusion level in dual-tasks. The changes between groups were compared using an independent t-test. The statistical significance level was set to p = .05. RESULTS: Significant interactions in the temporal and spatial-temporal gait parameters were found between the dual-task conditions and the other groups (p < .05). Significant within-group differences in the spatial, temporal, and spatial-temporal gait parameters were found according to the confusion level in dual tasks (p < .05). Significant between-group differences were observed in the temporal and spatial-temporal gait parameters according to the confusion level in dual tasks (p < .05). CONCLUSION: The effect of the confusion level in dual tasks was greater in subjects with CAI than in healthy individuals. This study suggests that to prevent reinjury to the ankle, subjects with CAI should avoid dual tasks such as using smartphones while walking.

Advanced Microwave Scanning Radiometer E Soil Moisture Evaluation for Haenam Flux Monitoring Network Site (해남 플럭스 타워 지점에서의 Advanced Microwave Scanning Radiometer E 토양수분자료의 검증)

  • Hur, Yoo-Mi;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • In this study, temporal variations of the Advanced Microwave Scanning Radiometer E (AMSR-E) soil moisture products were evaluated using ground based measurements from the Haenam flux monitoring network site for two years (2004 and 2006). Even if there were major comparison issues including spatial resolutions, AMSR-E soil moisture production showed a great potential to replicate temporal variability patterns with ground based measurements. Additional intensive validation efforts should be conducted at a variety of field conditions including vegetation type for better utilization of remotely sensed soil moisture and understanding of the land surface-atmosphere interactions in the view of hydrometeorology.

Temporal and Spatial Distributions of Phytoplankton Pigment Concentration around the Korean Peninsula using Ocean Color Remote Sensing Imagery (해색위성영상을 활용한 한반도 주변 해역의 식물플랑크톤 색소농도의 시공간적 분포)

  • Kim Sang Woo;Cho Kyu Dae;Kim Young Seup;Kim Dong Sun;Choi Yoon Sun;Suh Young Sang
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.191-193
    • /
    • 2003
  • Temporal and spatial variability of phytoplankton pigment concentrations around the Korea Peninsula was described, using the monthly mean composite images of the SeaWiFS (Sea-Viewing Wide Field-of-View Sensor). The high pigment concentrations appear in the spring and fall in the East Sea The spring bloom in the southern regions (in April) occurs one month in advance in comparison with tint in the northern regions (in May). In summer season, the pigment concentrations are low all over the region in the East Sea And the high pigment concentrations exist yearly around warm stream along the coast of the East Sea, and in the coast of the West Sea and South Sea In particular, the high pigment concentrations linking near the mouth q the Yangze River to coast of South Sea in Korea appear during August to December.

  • PDF

Analysis of Characteristics of Satellite-derived Air Pollutant over Southeast Asia and Evaluation of Tropospheric Ozone using Statistical Methods (통계적 방법을 이용한 동남아시아지역 위성 대기오염물질 분석과 검증)

  • Baek, K.H.;Kim, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.650-662
    • /
    • 2011
  • The statistical tools such as empirical orthogonal function (EOF), and singular value decomposition (SVD) have been applied to analyze the characteristic of air pollutant over southeast Asia as well as to evaluate Zimeke's tropospheric column ozone (ZTO) determined by tropospheric residual method. In this study, we found that the EOF and SVD analyses are useful methods to extract the most significant temporal and spatial pattern from enormous amounts of satellite data. The EOF analyses with OMI $NO_2$ and OMI HCHO over southeast Asia revealed that the spatial pattern showed high correlation with fire count (r=0.8) and the EOF analysis of CO (r=0.7). This suggests that biomass burning influences a major seasonal variability on $NO_2$ and HCHO over this region. The EOF analysis of ZTO has indicated that the location of maximum ZTO was considerably shifted westward from the location of maximum of fire count and maximum month of ZTO occurred a month later than maximum month (March) of $NO_2$, HCHO and CO. For further analyses, we have performed the SVD analyses between ZTO and ozone precursor to examine their correlation and to check temporal and spatial consistency between two variables. The spatial pattern of ZTO showed latitudinal gradient that could result from latitudinal gradient of stratospheric ozone and temporal maximum of ZTO in March appears to be associated with stratospheric ozone variability that shows maximum in March. These results suggest that there are some sources of error in the tropospheric residual method associated with cloud height error, low efficiency of tropospheric ozone, and low accuracy in lower stratospheric ozone.

Modeling of Emissions from Open Biomass Burning in Asia Using the BlueSky Framework

  • Choi, Ki-Chul;Woo, Jung-Hun;Kim, Hyeon Kook;Choi, Jieun;Eum, Jeong-Hee;Baek, Bok H.
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.25-37
    • /
    • 2013
  • Open biomass burning (excluding biofuels) is an important contributor to air pollution in the Asian region. Estimation of emissions from fires, however, has been problematic, primarily because of uncertainty in the size and location of sources and in their temporal and spatial variability. Hence, more comprehensive tools to estimate wildfire emissions and that can characterize their temporal and spatial variability are needed. Furthermore, an emission processing system that can generate speciated, gridded, and temporally allocated emissions is needed to support air-quality modeling studies over Asia. For these reasons, a biomass-burning emissions modeling system based on satellite imagery was developed to better account for the spatial and temporal distributions of emissions. The BlueSky Framework, which was developed by the USDA Forest Service and US EPA, was used to develop the Asian biomass-burning emissions modeling system. The sub-models used for this study were the Fuel Characteristic Classification System (FCCS), CONSUME, and the Emissions Production Model (EPM). Our domain covers not only Asia but also Siberia and part of central Asia to assess the large boreal fires in the region. The MODIS fire products and vegetation map were used in this study. Using the developed modeling system, biomass-burning emissions were estimated during April and July 2008, and the results were compared with previous studies. Our results show good to fair agreement with those of GFEDv3 for most regions, ranging from 9.7 % in East Asia to 52% in Siberia. The SMOKE modeling system was combined with this system to generate three-dimensional model-ready emissions employing the fire-plume rise algorithm. This study suggests a practicable and maintainable methodology for supporting Asian air-quality modeling studies and to help understand the impact of air-pollutant emissions on Asian air quality.

Estimation on the Depth of Anesthesia using Linear and Nonlinear Analysis of HRV (HRV 신호의 선형 및 비선형 분석을 이용한 마취심도 평가)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Hye-Jin;Kim, Tae-Kyun;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.76-85
    • /
    • 2010
  • In general, anesthetic depth is evaluated by experience of anesthesiologist based on the changes of blood pressure and pulse rate. So it is difficult to guarantee the accuracy in evaluation of anesthetic depth. The efforts to develop the objective index for evaluation of anesthetic depth were continued but there was few progression in this area. Heart rate variability provides much information of autonomic activity of cardiovascular system and almost all anesthetics depress the autonomic activity. Novel monitoring system which can simply and exactly analyze the autonomic activity of cardiovascular system will provide important information for evaluation of anesthetic depth. We investigated the anesthetic depth as following 7 stages. These are pre-anesthesia, induction, skin incision, before extubation, after extubation, Post-anesthesia. In this study, temporal, frequency and chaos analysis method were used to analyze the HRV time series from electrocardiogram signal. There were NN10-NN50, mean, SDNN and RMS parameter in the temporal method. In the frequency method, there are LF and HF and LF/HF ratio, 1/f noise, alphal and alpha2 of DFA analysis parameter. In the chaos analysis, there are CD, entropy and LPE. Chaos analysis method was valuable to estimate the anesthetic depth compared with temporal and frequency method. Because human body was involved the choastic character.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (II ) - On the Variability, Periodicity - (각종 수문기상인자의 경년별 특성변화 분석 (II) - 변동성, 주기성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.483-493
    • /
    • 2010
  • In this study, for the purpose of analyzing variability and periodicity of Korean hydrologic weather parameters, 5 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average temperature, annual average relative humidity, annual duration of sunshine are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And in this study the variability and periodicity using the statistical methods like Wald-Wolfowitz test, Mann-Whitney test, and Wavelet Transform about hydrologic weather parameters is analyzed. The results of statistical analysis of variability and periodicity can be summarized as follows: 1) Variability commonly appeared in annual average temperature and annual average relative humidity. 2) Annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area. 3) Periodicity appeared in annual precipitation and annual rainy days but did not appeard in annual average temperature, annual average relative humidity and annual duration of sunshine.

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.