• Title/Summary/Keyword: temporal segmentation

Search Result 107, Processing Time 0.023 seconds

Feature Extraction System for Land Cover Changes Based on Segmentation

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.207-214
    • /
    • 2004
  • This study focused on providing a methodology to utilize temporal information obtained from remotely sensed data for monitoring a wide variety of targets on the earth's surface. Generally, a methodology in understanding of global changes is composed of mapping, quantifying, and monitoring changes in the physical characteristics of land cover. The selected processing and analysis technique affects the quality of the obtained information. In this research, feature extraction methodology is proposed based on segmentation. It requires a series of processing of multitempotal images: preprocessing of geometric and radiometric correction, image subtraction/thresholding technique, and segmentation/thresholding. It results in the mapping of the change-detected areas. Here, the appropriate methods are studied for each step and especially, in segmentation process, a method to delineate the exact boundaries of features is investigated in multiresolution framework to reduce computational complexity for multitemporal images of large size.

A Study for a real-time variety region(object) extraction algorithm to implement MPEG-4 based Video Phones. (MPEG-4 기반의 영상전화기 구현을 위한 실시간 변환영역(객체) 추출에 관한 알고리즘)

  • Oh, In-Gwon;Shon, Young-Woo;Namgung, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.92-101
    • /
    • 2004
  • This paper proposes a algorithm to extract the variety region (object) from video for the real-time encoding of MPEG-4 based. The previous object segmentation methods cannot used the videophone or videoconference required by real-time processing. It is difficult to transfer a video to real-time because it increased complexity for the operation of each pixel on the spatial segmentation and temporal segmentation method proposed by MPEG-4 Working Group. But algorithm proposed for this thesis not operates a pixel unit but operates a macro block unit. Thus this enables real-time transfer. But this algorithm cannot extract several object for a image using proposed algorithm as previous algorithm. On system constructed by encoder and decoder. A proposed algorithm inserted for encoder as pre-process.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

A Variational Model For Longitudinal Brain Tissue Segmentation

  • Tang, Mingjun;Chen, Renwen;You, Zijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3479-3492
    • /
    • 2022
  • Longitudinal quantification of brain changes due to development, aging or disease plays an important role in the filed of personalized-medicine applications. However, due to the temporal variability in shape and different imaging equipment and parameters, estimating anatomical changes in longitudinal studies is significantly challenging. In this paper, a longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by combining intensity information and anisotropic smoothness term which contain a spatial smoothness constraint and longitudinal consistent constraint into a variational framework. The minimization of the proposed energy functional is strictly and effectively derived from a fast optimization algorithm. A large number of experimental results show that the proposed method can guarantee segmentation accuracy and longitudinal consistency in both simulated and real longitudinal MR brain images for analysis of anatomical changes over time.

Real-Time Foreground Segmentation and Background Substitution for Protecting Privacy on Visual Communication (화상 통신에서의 사생활 보호를 위한 실시간 전경 분리 및 배경 대체)

  • Bae, Gun-Tae;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.505-513
    • /
    • 2009
  • This paper proposes a real-time foreground segmentation and background substitution method for protecting the privacy on visual communication. Previous works on this topic have some problems with the color and shape of foreground and the capture device such as stereo camera. we provide a solution which can segment the foreground in real-time using fixed mono camera. For improving the performance of a foreground extraction, we propose the Temporal Foreground Probability Model (TFPM) by modeling temporal information of a video. Also we provide an boundary processing method for natural and smooth synthesizing that using alpha matte and simple post-processing method.

Image Segmentation of Adjoining Pigs Using Spatio-Temporal Information (시공간 정보를 이용한 근접 돼지의 영상 분할)

  • Sa, Jaewon;Han, Seoungyup;Lee, Sangjin;Kim, Heegon;Lee, Sungju;Chung, Yongwha;Park, Daihee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.473-478
    • /
    • 2015
  • Recently, automatic video monitoring of individual pigs is emerging as an important issue in the management of group-housed pigs. Although a rich variety of studies have been reported on video monitoring techniques in intensive pig farming, it still requires further elaboration. In particular, when there exist adjoining pigs in a crowd pig room, it is necessary to have a way of separating adjoining pigs from the perspective of an image processing technique. In this paper, we propose an efficient image segmentation solution using both spatio-temporal information and region growing method for the identification of individual pigs in video surveillance systems. The experimental results with the videos obtained from a pig farm located in Sejong illustrated the efficiency of the proposed method.

Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System (객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법)

  • Yu Hong-Yeon;Hong Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.

  • PDF

Region-Based Video Object Extraction Using Potential of frame - Difference Energies (프레임차 에너지의 전위차를 이용한 영역 기반의 비디오 객체 추출)

  • 곽종인;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.268-275
    • /
    • 2002
  • This paper proposes a region-based segmentation algorithm fur extracting a video object by using the cost of potential of frame-difference energies. In the first step of a region-based segmentation using spatial intensity, each frame is segmented into a partition of homogeneous regions finely so that each region does not contain the contour of a video object. The fine partition is used as an initial partition for the second step of spatio-temporal segmentation. In spatio-temporal segmentation, the homogeneity cost for each pair of adjacent regions is computed which reflects the potential between the frame-difference energy on the common contour and the frame-difference energy of the lower potential region of the two. The pair of adjacent regions whose cost is minimal then is searched. The two regions of minimum cost ale merged, which result in updating the partition. The merging is recursively performed until only the contours remain which have Same difference energies of high potential. In the fecal step of post-processing, the video object is extracted removing the contours inside the object.

Subspace Projection-Based Clustering and Temporal ACRs Mining on MapReduce for Direct Marketing Service

  • Lee, Heon Gyu;Choi, Yong Hoon;Jung, Hoon;Shin, Yong Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.317-327
    • /
    • 2015
  • A reliable analysis of consumer preference from a large amount of purchase data acquired in real time and an accurate customer characterization technique are essential for successful direct marketing campaigns. In this study, an optimal segmentation of post office customers in Korea is performed using a subspace projection-based clustering method to generate an accurate customer characterization from a high-dimensional census dataset. Moreover, a traditional temporal mining method is extended to an algorithm using the MapReduce framework for a consumer preference analysis. The experimental results show that it is possible to use parallel mining through a MapReduce-based algorithm and that the execution time of the algorithm is faster than that of a traditional method.

An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm (개선된 다중 구간 샘플링 배경제거 알고리즘)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.