• Title/Summary/Keyword: temporal expression

Search Result 226, Processing Time 0.024 seconds

Identification of Sex-specific Expression Markers in the Giant Tiger Shrimp (Penaeus monodon)

  • Khamnamtong, Bavornlak;Thumrungtanakit, Supaporn;Klinbunga, Sirawut;Aoki, Takashi;Hirono, Ikuo;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Bulked segregant analysis (BSA) and AFLP were used for isolation of genomic sex determination markers in Penaeus monodon. A total of 256 primer combinations were tested against 6-10 bulked genomic DNA of P. monodon. Five and one candidate female- and male-specific AFLP fragments were identified. Female-specific fragments were cloned and further characterized. SCAR markers derived from FE10M9520, FE10M10725.1, FE10M10725.2 and FE14M16340 provided the positive amplification product in both male and female P. monodon. Further analysis of these markers using SSCP and genome walk analysis indicated that they were not sex-linked. In addition, sex-specific (or differential) expression markers in ovaries and testes of P. monodon were analyzed by RAP-PCR (150 primer combinations). Twenty-one and fourteen RAP-PCR fragments specifically/differentially expressed in ovaries and testes of P. monodon were successfully cloned and sequenced. Expression patterns of 25 transcripts were tested against the first stranded cDNA of ovaries and testes of 3-month-old and broodstock-sized P. monodon (N = 5 and N = 7 - 10 for females and N = 4 and N = 5 - 7 for males, respectively). Five (FI-4, FI-44, FIII-4, FIII-39 and FIII-58) and two (M457-A01 and MII-51) derived RAP-PCR markers revealed female- and male-specific expression patterns in P. monodon. Surprisingly, MII-5 originally found in testes showed a higher expression level in ovaries than did testes of juvenile shrimps but a temporal female-specific pattern in P. monodon adults.

Engineering lacZ Reporter Gene into an ephA8 Bacterial Artificial Chromosome Using a Highly Efficient Bacterial Recombination System

  • Kim, Yu-Jin;Song, Eun-Sook;Choi, Soon-Young;Park, Soo-Chul
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.656-661
    • /
    • 2007
  • In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.

Identification of Sperm mRNA Biomarkers Associated with Sex-Determination in Korean Native Cows

  • Min, Kwan-Sik;Byambaragchaa, Munkhzaya;Kim, Hyun;Park, Myung-Hum
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • This study was conducted to analyze the specific genes associated with sex-determination in Korean native cow. The highly organized spermatogenesis requires accurate spatial and temporal regulation of gene expression, which is governed by transcriptional, post-transcriptional, and epigenetic processes. Recently, farmers have been interested in determining the sexual identity of the calves in their farm. We analyzed the sperm of Korean native and Holstein cows, which were supplied from Hanwoo Improvement Center. We evaluated sperm motility and expression of sperm-specific genes after treating semen with both male- and female reagents. Sperm motility in Korean native cows decreased by approximately 10% in the first 30 minutes after treatment with sex-determination reagent. However, sperm motility of Holstein cows decreased to 60-70% after 15 minutes and to 20-30% after 30 minutes. We selected six specific genes expressing in the spermatozoa to analysis the gene expression level. The Real-time PCR results suggest that the selected genes (Gimap4, Tmeff1, Rac2, Abi2, Rac1, and Clu) were highly expressed in the group treated with the male reagent compared to the group treated the female reagent and to the untreated-group (control). In the present study, we suggest that the selected genes play a pivotal role in sex-determination.

Functional Classification of Gene Expression Profiles During Differentiation of Mouse Embryonic Cells on Monolayer Culture

  • Leem, Sun-Hee;Ahn, Eun-Kyung;Heo, Jeong-Hoon
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.235-245
    • /
    • 2009
  • Embryonic stem (ES) cells have a capability to generate all types of cells. However, the mechanism by which ES cells differentiate into specific cell is still unclear. Using microarray technology, the differentiation process in mouse embryonic stem cells was characterized by temporal gene expression changes of mouse ES cells during differentiation in a monolayer culture. A large number of genes were differentially regulated from 1 day to 14 days, and less number of genes were differentially expressed from 14 days to 28 days. The number of up-regulated genes was linearly increased throughout the 28 days of in vitro differentiation, while the number of down-regulated genes reached the plateau from 14 days to 28 days. Most differentially expressed genes were functionally classified into transcriptional regulation, development, extra cellular matrix (ECM),cytoskeleton organization, cytokines, receptors, RNA processing, DNA replication, chromatin assembly, proliferation and apoptosis related genes. While genes encoding ECM proteins were up-regulated, most of the genes related to proliferation, chromatin assembly, DNA replication, RNA processing, and cytoskeleton organization were down-regulated at 14 days. Genes known to be associated with embryo development or transcriptional regulation were differentially expressed mostly after 14 days of differentiation. These results indicate that the altered expression of ECM genes constitute an early event during the spontaneous differentiation, followed by the inhibition of proliferation and lineage specification. Our study might identify useful time-points for applying selective treatments for directed differentiation of mouse ES cells.

Altered expression of adrenocorticotropic hormone in the epileptic gerbil hippocampus following spontaneous seizure

  • Oh, Yun-Jung;Kim, Heung-No;Jeong, Ji-Heon;Park, Dae-Kyoon;Park, Kyung-Ho;Ko, Jeong-Sik;Kim, Duk-Soo
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • We investigated the temporal alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the hippocampus after seizure onset. Expression of ACTH was observed within inter-neurons in the pre-seizure group of seizure sensitive gerbils, whereas its immunoreactivities were rarely detected in seizure resistant gerbil. Three hr after the seizure, ACTH immunoreac-tivity was significantly increased in interneurons within all hippocampal regions. On the basis of their localization and morphology through immunofluorescence staining, these cells were identified as $GABA_A$ ${\alpha}1$-containing interneurons. At the 12 hr postictal period, ACTH expression in these regions was down-regulated, in a similar manner to the pre-seizure group of gerbils. These findings support the increase in ACTH synthesis that contributes to a reduction of corticotrophin-releasing factor via the negative feedback system which in turn provides an opportunity to enhance the excitability of GABAergic interneurons. Therefore, ACTH may play an important role in the reduction of excitotoxicity in all hippocampal regions.

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

Photodynamic Therapy-Mediated Temporal Expression of Thymidine Kinase Genes Ligated to the Human Heat Shock Promotor: Preliminary in vitro Model Study of Enhanced Phototoxicity by PDT-Induced Gene Therapy

  • Kim, Mo-Sun;Kim, Tae-An;Kim, Jong-Ki
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.41-43
    • /
    • 2002
  • PDT-mediated cyototoxicity basically depends on the penetrated light-dose into the tumor tissue. This limits the efficiency of PDT to the superficial tumor region typically less than 1 cm. The localized photochemical generation of reactive oxygen species, including singlet oxygen is known to increase expression of assortment of early response genes including heat shock protein. In order to increase PDT cytotoxicity in the treatment of solid tumor, it is desirable to combine PDT with other therapeutic effects. In this preliminary study we evaluated enhanced cytotoxicity from the PDT-mediated expression of thymidine kinase in a transfected tumor cell line. Two types of photo sensitizers, a hematoporphyrin derivative(Photogem, Russia) and aluminium sulphonated phthalocyanine(Photosense, Russia) were used to evaluate the overexpression of hsp-70 in PDT-treated cell. Transient increase of hsp-70 was observed at 6-8 hrs later following irradiation in the photosense-treated cell whereas it was not observed in Photogem-treated cell. In the presence of ganciclovia, transfected cell showed a 17% increase in the cytotoxicity compared to the PDT only cell.

  • PDF

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.