• Title/Summary/Keyword: template-matching

Search Result 396, Processing Time 0.024 seconds

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.

A Framework for 3D Hand Gesture Design and Modeling (삼차원 핸드 제스쳐 디자인 및 모델링 프레임워크)

  • Kwon, Doo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5169-5175
    • /
    • 2013
  • We present a framework for 3D hand gesture design and modeling. We adapted two different pattern matching techniques, Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs), to support the registration and evaluation of 3D hand gestures as well as their recognition. One key ingredient of our framework is a concept for the convenient gesture design and registration using HMMs. DTW is used to recognize hand gestures with a limited training data, and evaluate how the performed gesture is similar to its template gesture. We facilitate the use of visual sensors and body sensors for capturing both locative and inertial gesture information. In our experimental evaluation, we designed 18 example hand gestures and analyzed the performance of recognition methods and gesture features under various conditions. We discuss the variability between users in gesture performance.

Detection of Traffic Light using Color after Morphological Preprocessing (형태학적 전처리 후 색상을 이용한 교통 신호의 검출)

  • Kim, Chang-dae;Choi, Seo-hyuk;Kang, Ji-hun;Ryu, Sung-pil;Kim, Dong-woo;Ahn, Jae-hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.367-370
    • /
    • 2015
  • This paper proposes an improve method of the detection performance of traffic lights for autonomous driving cars. Earlier detection methods used to adopt color thresholding, template matching and based learning maching methods, but its have some problems such as recognition rate decreasing, slow processing time. The proposed method uses both detection mask and morphological preprocessing. Firstly, input color images are converted to YCbCr image in order to strengthen its illumination, and horizontal edge components are extracted in the Y Channel. Secondly, the region of interest is detected according to morphological characteristics of the traffic lights. Finally, the traffic signal is detected based on color distributions. The proposed method showed that the detection rate and processing time improved rather than the conventional algorithm about some surrounding environments.

  • PDF

Automatic Phonetic Segmentation of Korean Speech Signal Using Phonetic-acoustic Transition Information (음소 음향학적 변화 정보를 이용한 한국어 음성신호의 자동 음소 분할)

  • 박창목;왕지남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.24-30
    • /
    • 2001
  • This article is concerned with automatic segmentation for Korean speech signals. All kinds of transition cases of phonetic units are classified into 3 types and different strategies for each type are applied. The type 1 is the discrimination of silence, voiced-speech and unvoiced-speech. The histogram analysis of each indicators which consists of wavelet coefficients and SVF (Spectral Variation Function) in wavelet coefficients are used for type 1 segmentation. The type 2 is the discrimination of adjacent vowels. The vowel transition cases can be characterized by spectrogram. Given phonetic transcription and transition pattern spectrogram, the speech signal, having consecutive vowels, are automatically segmented by the template matching. The type 3 is the discrimination of vowel and voiced-consonants. The smoothed short-time RMS energy of Wavelet low pass component and SVF in cepstral coefficients are adopted for type 3 segmentation. The experiment is performed for 342 words utterance set. The speech data are gathered from 6 speakers. The result shows the validity of the method.

  • PDF

Generation Method of Spatiotemporal Image for Detecting Leukocyte Motions in a Microvessel (미소혈관내 백혈구 운동검출을 위한 시공간 영상 생성법)

  • Kim, Eung Kyeu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.99-109
    • /
    • 2016
  • This paper presents a method for generating spatiotemporal images to detect the leukocyte motions in a microvessel. By using the constraint that the leukocytes move along the contour line of a blood vessel wall, the method detects leukocyte motions and then generates spatiotemporal images. the translational motion by a movement in vivo is removed first by the template matching method. Next, a blood vessel region is detected by the automatic threshold selection method to binarize the temporal variance image, then a blood vessel wall's contour is expressed by B-spline function. With the detected blood vessel wall's contour as an initial curve, the plasma layer of the best accurate position is determined to be the spatial axis by snake. Finally, the spatiotemporal images are generated. The experimental results show the spatiotemporal images are generated effectively through the comparison of each step of three image sequences.

VALIDATION OF SEA ICE MOTION DERIVED FROM AMSR-E AND SSM/I DATA USING MODIS DATA

  • Yaguchi, Ryota;Cho, Ko-Hei
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.301-304
    • /
    • 2008
  • Since longer wavelength microwave radiation can penetrate clouds, satellite passive microwave sensors can observe sea ice of the entire polar region on a daily basis. Thus, it is becoming popular to derive sea ice motion vectors from a pair of satellite passive microwave sensor images observed at one or few day interval. Usually, the accuracies of derived vectors are validated by comparing with the position data of drifting buoys. However, the number of buoys for validation is always quite limited compared to a large number of vectors derived from satellite images. In this study, the sea ice motion vectors automatically derived from pairs of AMSR-E 89GHz images (IFOV = 3.5 ${\times}$ 5.9km) by an image-to-image cross correlation were validated by comparing with sea ice motion vectors manually derived from pairs of cloudless MODIS images (IFOV=250 ${\times}$ 250m). Since AMSR-E and MODIS are both on the same Aqua satellite of NASA, the observation time of both sensors are the same. The relative errors of AMSR-E vectors against MODIS vectors were calculated. The accuracy validation has been conducted for 5 scenes. If we accept relative error of less than 30% as correct vectors, 75% to 92% of AMSR-E vectors derived from one scene were correct. On the other hand, the percentage of correct sea ice vectors derived from a pair of SSM/I 85GHz images (IFOV = 15 ${\times}$ 13km) observed nearly simultaneously with one of the AMSR-E images was 46%. The difference of the accuracy between AMSR-E and SSM/I is reflecting the difference of IFOV. The accuracies of H and V polarization were different from scene to scene, which may reflect the difference of sea ice distributions and their snow cover of each scene.

  • PDF

Detecting and Tracking Vehicles at Local Region by using Segmented Regions Information (분할 영역 정보를 이용한 국부 영역에서 차량 검지 및 추적)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.929-936
    • /
    • 2007
  • The novel vision-based scheme for real-time extracting traffic parameters is proposed in this paper. Detecting and tracking of vehicle is processed at local region installed by operator. Local region is divided to segmented regions by edge and frame difference, and the segmented regions are classified into vehicle, road, shadow and headlight by statistical and geometrical features. Vehicle is detected by the result of the classification. Traffic parameters such as velocity, length, occupancy and distance are estimated by tracking using template matching at local region. Because background image are not used, it is possible to utilize under various conditions such as weather, time slots and locations. It is performed well with 90.16% detection rate in various databases. If direction, angle and iris are fitted to operating conditions, we are looking forward to using as the core of traffic monitoring systems.

The Implementation of Automatic Compensation Modules for Digital Camera Image by Recognition of the Eye State (눈의 상태 인식을 이용한 디지털 카메라 영상 자동 보정 모듈의 구현)

  • Jeon, Young-Joon;Shin, Hong-Seob;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • This paper examines the implementation of automatic compensation modules for digital camera image when a person is closing his/her eyes. The modules detect the face and eye region and then recognize the eye state. If the image is taken when a person is closing his/her eyes, the function corrects the eye and produces the image by using the most satisfactory image of the eye state among the past frames stored in the buffer. In order to recognize the face and eye precisely, the pre-process of image correction is carried out using SURF algorithm and Homography method. For the detection of face and eye region, Haar-like feature algorithm is used. To decide whether the eye is open or not, similarity comparison method is used along with template matching of the eye region. The modules are tested in various facial environments and confirmed to effectively correct the images containing faces.

Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM (광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식)

  • Chun, Jun-Chul;Shin, Gi-Han
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.55-70
    • /
    • 2009
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

  • PDF

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV (OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식)

  • Kim, Gihong;Chong, Kyusoo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.