• Title/Summary/Keyword: temperature variations

Search Result 2,419, Processing Time 0.031 seconds

A Comparision of the Breakdown Characteristics for $SF_6$ and I-Air based on Temperature variations (온도변화에 따른 $SF_6$와 I-Air의 절연파괴특성 비교)

  • Park, He-Rie;Kim, Do-Seok;Lee, Sang-Ho;Woo, Sung-Hun;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.235-237
    • /
    • 2008
  • This paper gives a basic data of the breakdown characteristics of l-Air(Imitation Air, $N_2:O_2=79:21$) and $SF_6$ gas based on temperature variations in experimental GIS model by applying negative DC voltage. The breakdown charcteristics were compared with gas pressures and each gas already entered in GIS model. The characteristics of l-Air and $SF_6$ were different in specific temperature range that $SF_6$ gas was being liquefied. The breakdown voltages of $SF_6$ were more higher than l-Air except for 4[atm] at $-10{\sim}0[^{\circ}C]$.

  • PDF

A Study on the Formation of Interface and the Thin Film Microstructure in TiN Deposited by Ion Plating (이온플레팅에 의한 TiN 증착중 계면형성과 박막 미소조직에 관한 연구)

  • 여종석;이종민;한봉희
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.73-79
    • /
    • 1991
  • Recent studies son surface coatings have shown that the change of physical, chemical and crystallographic structure analysed and observed according to the deposition process variables has the effects on the resultant film properties. Under the same preparation condition conditions of the substrate and process variables, physical morphology variations characterized by substrate temperature and bias which offect the surface mobility of adatom and adhesion variations related to the formation of Ti interlayer were considered in the present study. Microhardness showed the highest value around 40$0^{\circ}C$ of the substrate temperature and increased with the substrate bias. Adhesion was improved with the increase of substrate temperature and bias. An interlayer of pure titanium formed prior to deposition of TiN improves the adhesion at its optimum thickness. These results were explained by the change of physical morphology and phase analysis.

  • PDF

Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique (홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석)

  • Kim Seok;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

Design of a Compensation Algorithm for Thermal Infrared Data considering Environmental Temperature Variations (주변 환경 온도 변화를 고려한 열화상 온도 데이터의 보정 알고리즘 설계)

  • Song, Seong-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.261-266
    • /
    • 2021
  • This paper suggests design methodology for thermal infrared data correction algorithms considering environmental temperature variations. First, a thermal infrared measurement model is suggested by a parameter-dependent first-order input-output equation using the relationship between infrared measurement data and model environmental parameters. In order to compensate the influence of environmental temperatures on infrared data, a compensation function is identified. Through experiments, the proposed algorithm is shown to reduce the influence of environmental temperatures on the infrared data effectively.

A study on the variations of water temperature and sonar performance using the empirical orthogonal function scheme in the East Sea of Korea (동해에서 경험직교함수 기법을 이용한 수온과 소나성능 변화 연구)

  • Young-Nam Na;Changbong Cho;Su-Uk Son;Jooyoung Hahn
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • For measuring the performance of passive sonars, we usually consider the maximum Detection Range (DR) under the environment and system parameters in operation. In shallow water, where sound waves inevitably interacts with sea surface or bottom, detection generally maintains up to the maximum range. In deep water, however, sound waves may not interact with sea surface or/and bottom, and thus there may exist shadow zones where sound waves can hardly reach. In this situation, DR alone may not completely define the performance of each sonar. For complete description of sonar performance, we employ the concept 'Robustness Of Detection (ROD)'. In the coastal region of the East Sea, the spatial variations of water masses have close relations with DR and ROD, where the two parameters show reverse spatial variations in general. The spatial and temporal analysis of the temperature by employing the Empirical Orthogonal Function (EOF) shows that the 1-st mode represents typical pattern of seasonal variation and the 2-nd mode represents strength variations of mixed layers and currents. The two modes are estimated to explain about 92 % of the variations. Assuming two types of targets located at the depths of 5 m (shallow) and 100 m (deep), the passive sonar performance (DR) gives high negative correlations (about -0.9) with the first two modes. Most of temporal variations of temperature occur from the surface up to 200 m in the water column so that when we assume a target at 100 m, we can expect detection performance of little seasonal variations with passive sonars below 100 m.

Effect of Temperature Variations on Heat Transfer Coefficient in Crossflow over a Circular Cylinder (온도변화가 실린더 주위 열전달계수에 미치는 영향에 관한 실험적 연구)

  • Kauh, S.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • coefficient precisely, experiments were carried out in three categories which contain the regime of (1) constant wire temperature (2) constant fluid temperature (3) constant temperature difference between wire and fluid. Measurements were made with electrically heated circular tungsten wire placed normal to air stream at the exit of jet. Heat transfer coefficient was increased with wire temperature increasing and decreased by fluid temperaure increasing and was not changed with varying both temperature if their difference were kept constant.

  • PDF

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

VARIATIONS IN THE SOYA WARM CURRENT OBSERVED BY HF OCEAN RADAR, COASTAL TIDE GAUGES AND SATELLITE ALTIMETRY

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Shirasawa, Kunio;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.17-20
    • /
    • 2006
  • Three HF ocean radar stations were installed at the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current. The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and $5^{\circ}$, respectively. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and short-term variations of the Soya Warm Current. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m $s^{-1}$, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  • PDF

Compared of Temporal and Spatial Sea Water Quality in the Southern Coasts of Korea (남해안 시.공간적 수질환경 특성 비교)

  • Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2009
  • Temperature, salinity, COD, DIN (Dissolved Inorganic Nitrogen), DIP (Dissolved Inorganic Phosphorus), and Chlorophyll ${\alpha}$ obtained from the southern coastal waters during the period of 2003 to 2005 were analyzed. Variability in temperature was not found between groups in southern coastal waters, but significantly different depending on sampling sites (p<0.05). The average temperature in 2003 estimated at $18.33^{\circ}C$ that was annually increased by 2005 and significantly different based on statistics (p<0.05). Unlikely to temperature, salinity was significantly different depending on sampling sites, as well as monthly variations (p<0.05). Likewise to temperature, the value of salinity was annually increased. COD estimated at the average of $>1.7\;mg\;l^{-1}$ for three years, indicating optimal water quality. The fluctuations of nutrients were extremely shown in different sampling sites and monthly variations. Chlorophyll a recorded above $2.0{\mu}g\;l^{-1}$ which was associated with high primary phytoplankton, whereas it showed much fluctuations in temporal and spatial, In particular, Tongyong, Jaranman, Jinjuman, and Samcheonpo located in the southeast were the highest fluctuations in water quality than any other regions. The correlation between salinity/COD and nutrients/chlorophyll a was strongly negative or positive, which was possibly associated with much the introduction of run-off water as well as rainfall in summer.

Effect of Temperature and Pressure on the Viscosity of Benzene (벤젠의 점성도에 대한 온도와 압력의 영향)

  • Jeong Rim Kim;Jin Burm Kyong;Mi Hyun Lew
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1003-1009
    • /
    • 1993
  • The viscosities of benzene have been determined at several temperatures and pressures to investigate the effect of temperature and pressure on the viscosity of benzene in liquid phase. When a falling ball viscometer with a constant volume contained a given amount of liquid benzene at desired temperatures and pressures, the viscosities of benzene in the viscometer could be evaluated from the measurements of the falling time of a skinker. The variations of the specific volume and the free volume of liquid benzene with temperature and pressure were, from the results, searched out. Finally, the effects of temperature and pressure on the viscosity of benzene were discussed by means of the variations of free volume with temperature and pressure.

  • PDF