• Title/Summary/Keyword: temperature standards

Search Result 885, Processing Time 0.021 seconds

Investigation on the environment of facilities for conservation of the Ten storied stone pagoda of Wongaksa Temple site (원각사지10층석탑 보호각 내부 보존환경 조사연구)

  • Hong, Jung-Ki;Eom, Doo-Sung;Kim, Soon-Kwan
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.95-112
    • /
    • 2002
  • Seoul City built a facility for conservation of the Wongaksajisipcheungseoktap (Ten storied stone pagoda of Wongaksa Temple site, National treasure No. 2). It has speciality glass(thickness 21.5㎜) between steel-frames(8.4m, length 8.4m, height 15.4m). So we investigated the inside of facility to know whether the environment alvariation exists. We measured continuously the temperature and relative humidity, twice for the particulate, once for the $SO_2$(sulfur dioxide), $NO_2$(nitrogen dioxide)and $O_3$(ozone) from September $1_st$, 2000 to August $31_st$, 2001.The temperature and relative humidity, have a tendency to vary, and they have no difference between the inside and the outside. As dewy phenomenon doesn appear on the surface of the Pagoda and facility we know that the inside air is moving. As a result of the particulate is $64\mug$/$m_3$ of average concentration, the particulate fluxed inside don’t flow out because air-velocity of the outside is faster than that of the inside. The air pollutants are 0.036ppm/hr of SO$_2$average concentration, 0.028ppm/hr of $NO_2$ average concentration and 0.008ppm/hr of $O_3$ average concentration which are lower than the Environmental Air Quality Standards($SO_2$ : 0.15ppm/hr, $NO_2$ : 0.25ppm/hr,O3 : 0.1ppm/hr).

  • PDF

Taeyoung Submerged-type Membrane Filtration for Advanced Drinking Water Treatment (태영 침지식 막여과 고도정수처리)

  • Yeon, Kyeongho;Cho, Jaebeom;Lee, Yunkyu;Kang, Hojung;Kim, Woogu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.15-27
    • /
    • 2013
  • In order to plan out the Daegu G membrane filtration water treatment plant, water quantity, water quality and process stability were evaluated using the field pilot-scale tests, during the six months of continuous operation, including low water temperature period. The field model experiments, which were carried out according to the Installation Criteria of Ministry of Environment, consisted of two series : series 1 - water quality verification, and series 2 - membrane process evaluation. The process water quality met all drinking water standards with less than 0.03 NTU. Moreover, process operation showed a stable membrane pressure with 99% of recovery ratio. This shows that the tests were properly designed in terms of the influence of water loading and temperature. In conclusion, the purpose of this study is to establish core technology for advanced drinking water treatment, through on-going accumulation of engineering and construction know-how.

Process optimization for biodiesel production from indigenous non-edible Prunus armeniaca oil

  • Singh, Deepak;Kumar, Veerendra;Sandhu, S.S.;Sarma, A.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.189-202
    • /
    • 2016
  • This work emphasized optimum production of biodiesel using non-edible Prunus armeniaca (Bitter Apricot) oil via transesterification collected from the high altitude areas of Himachal Pradesh, India. In this study the author produced biodiesel through the process of transesterification by using an alkali catalyst with alcohol (methanol and ethanol), under the varying molar ratio (1:6, 1:9, 1:12), variable catalyst percentage (1% and 2%) and temperature ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, $85^{\circ}C$). Furthermore, a few strong base catalysts were used that includes sodium hydroxide, potassium hydroxide, sodium metal and freshly prepared sodium methoxide. After screening the catalyst, response surface methodology (RSM) in connection with the central composite design (CCD) was used to statistically evaluate and optimize the biodiesel production operation using NaOH as catalyst. It was found that the production of biodiesel achieved an optimum level biodiesel yield with 97.30% FAME conversion under the following reaction conditions: 1) Methanol/oil molar ratio: 1:6, 2) Reaction time: 3h, 3) Catalyst amount: NaOH 2 wt. %, and 4) Reaction temperature: $85^{\circ}C$. The experimental results showed that the optimum production and conversion of biodiesel through the process of transesterification could be achieved under an optimal set of reaction conditions. The biodiesel obtained showed appropriate fuel properties as specified in ASTM, BIS and En- standards.

Study of Energy Cost for Performing Flush-out in Newly Constructed Multi-residential Buildings during Winter Season (겨울철 신축 공동주택의 플러쉬아웃 시행 시 난방비용에 관한 연구)

  • Lee, Ki Yong;Kim, Kee Han;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.110-114
    • /
    • 2016
  • Newly constructed multi-residential buildings with more than 500 households should be flushed out indoor contaminants using a mechanical ventilation system or large fans after the completion of construction and prior to occupancy by the Heath-friendly Housing Construction Standards since 2014. In addition, the standard recommends to maintain indoor temperature over $16^{\circ}C$ and relative humidity below 60% while performing the flush-out. However, it is difficult to maintain these recommended indoor conditions, especially during winter season because additional energy cost is needed for space heating. Therefore, in this study, additional energy cost including heating and ventilation energy cost in multi-residential household for flush-out during winter season was estimated using building energy simulation program called EnergyPlus. Additional energy cost according to various conditions for performing flush-out (such as performance period, ventilation rate, and heating set-point temperature) was analyzed. Based on the results of the energy simulation, the energy cost was estimated to be ranged from 14,625 to 29,452\/household in Incheon city and from 3,521 to 26,268\/household in Gwangju City. There was no significant change in energy cost according to the performing terms of flush-out between Incheon and Gwangju City.

An Experimental Study on the Distillation Characteristics of Fuel Used in an Internal Combustion Engine Vehicle (내연기관 자동차에 사용되는 연료의 증류특성에 관한 실험적 연구)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.52-56
    • /
    • 2021
  • With the development of an eco-friendly environment and the automobile industry, research is being actively conducted to increase thermal efficiency and reduce exhaust gas through complete combustion in internal combustion engine vehicles. In particular, research is underway to increase engine load and output by understanding the volatility and combustion characteristics of gasoline, and research is underway to reduce soot and harmful gases and realize optimal efficiency based on the distillation and combustion characteristics of diesel fuel. . Therefore, in this study, based on the contents of KS M ISO 3045 on the distillation test method for petroleum products according to the Korean industrial standard, distillation experiments were conducted based on gasoline and diesel from 4 refineries marketed and used in Korea. The distillation experiment confirmed the correlation with the distillation temperature according to the amount of distillation, and the distillation characteristics were analyzed by comparing the distilled fuel to confirm the suitability of meeting the test standards.

Evaluation of Thermal Conductivity of Porous TiO2-SiO2-Base Thermal Insulation (다공성 TiO2-SiO2 복합 단열재의 열전도율 평가)

  • Choi, Byugchul;Kim, Jon-Ho;Kim, Jon Beom;Jung, Woonam;Lee, Sang-Hyun
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2018
  • We developed nano-porous $TiO_2-SiO_2$ composites (commercial name : PTI, porous titania insulator) with low thermal conductivity as thermal insulating material as well as function of photocatalyst. The objectives of this paper are, firstly, to evaluate of the thermal conductivity of the PTI powder in the temperature range from -160 to $250^{\circ}C$, secondly to evaluate of thermal conductivities of insulation materials that is applied PTI powder. The structure of the PTI powder that has the pores size of 20-30 nm and the particle diameter of 2-10 nm. The PTI had a high surface area of $400m^2/g$ and a mean pore size of $45{\AA}$, which was fairly uniform. The thermal conductivity was measured by GHP(guarded hot plate) method and HFM(heat flux method). The PTI structure is a three-dimensional network nano-structures composed by a pearl-necklace that involved a precious stone in the center of the necklace. The thermal conductivities of PTI-PX powder by the GHP and HFM were 0.0366 W/m.K, 0.0314 W/m.K at $20^{\circ}C$, respectively. This is similar to values that are proportional to the square of the absolute temperature of the thermal conductivity of static air. The thermal conductivities of insulating sheets coated with PTI powder were similar results with that of the PTI powder.

The Efficient Method for Video Data Streaming via NMEA-0183 (NMEA-0183 기반 영상데이터의 효율적인 스트리밍 기법)

  • Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1300-1305
    • /
    • 2020
  • Due to the simplicity of communication structure using RS-232 and RS-422, the majority ships have still adapted on these communication interfaces and have constructed their own communication network in the ship. NMEA-0183 is the one of standards for BNWAS(Bridge Navigational Watch Alarm System) and currently being used in many countries. BNWAS utilises diverse sensor devices, GPS, AIS and so on for monitoring the status of ships and their deployments and environmental information(temperature, humidity, wind speed/direction, water temperature/current etc…). This paper proposes the use of any image sensors in NMEA-0183 environment and verifies possibility with certain video qualities through the experiment results. Furthermore the paper gathers videos and monitors the change of their qualities depending on the number of NMEA messages on RS-232 communication link. Finally we make conclusion that our proposal is sufficiently appropriate for ship monitoring system in the NMEA-0183.

A Study of Germination Characteristics of Native Plants to be Utilized in DMZ Barren Land (불모지 내 활용 가능한 자생식물의 발아특성 연구)

  • Kim, Dong-Hak;Kim, Sang-Jun;Yu, Seung-Bong;Bak, Gippeum
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.1-14
    • /
    • 2021
  • This study suggested suitable soil textures that is proper to propagate native plants to manage and restore barren land in DMZ. Germination tests were conducted for 16 native herbaceous plants growing in the DMZ border area in accordance with FAO-BI (Biodiversity International) standards, and the germination rate and T50 in vitro were investigated. In order to examine the germination characteristics according to the soil textures, we used gravel, bed and mixed soil and investigated the germination characteristics under ordinary room temperature conditions in the greenhouse. As a result, it was observed that the germination rate in the greenhouse was significantly decreased compared to the germination rate in vitro of the species advertised due to soil textures. T50 between the in vitro and each soil texture showed significant differences whereas T50 between soil textures alone did not in all species advertised. The germination rate in vitro of Aster koraiensis, Dendranthema zawadskii var. latilobum, Hosta clausa, and Hosta minor there was no significant difference compared to ordinary room temperature conditions. In addition, as the germination rate is demonstrated more than 70%, which is relatively higher than other species advertised, it is considered to have strong environmentally adaptable. On the other hand, considering that the 6 species of Leontopodium coreanum, Plantago major, Potentilla chinensis, Sedum kamtschaticum, Sedum latiovalifolium, and Veronica kiusiana demonstrated less than 50% of germination rate in vitro, it is expected to be difficult to propagate without pre-treatment. In order to use these 6 species as restoration material plants, it needs to be considered to pre-treat to improve germination rate, or to enhance the vitality of seeds by improving the seed gathering period and storage method.

A Study on the Washability and Washing Conditions of the Industrial Alkaline Laundry Detergent Suitable for Water Discharge Standards and Detergent Regulations (수질 배출기준 및 세제 안전기준에 적합한 산업용 알칼리 세탁세제의 세척성과 세탁조건 연구)

  • Song, Hyunjoo;Song, Sunhye
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.250-257
    • /
    • 2021
  • Laundry industry has traditionally been considered an industry that generates large amounts of wastewater and Volatile Organic Compounds(VOCs). This is still the case until now. Household laundry detergents are produced and distributed within the safety regulations on the amount of harmful substances detected. While industrial laundry detergents are often distributed without safety regulations, and even laundry workers manufacture and use them on their own. This contaminates water and air and also threatens the safety of workers. This study is a basic study for distributing eco-friendly detergents(EFD-A) developed through previous studies to the laundry industry. Safety, washability and wastewater quality of EFD-A are evaluated. Three existing commercial detergents(PD1, PD2, LD4) are also evaluated to compare with EFD-A. The safety of detergents is confirmed by the content of optical brightener, VOCs, and arsenic. Washability is evaluated by the difference in reflectance of washed and unwashed artificial soiled fabrics according to detergent concentration, washing temperature, and washing time. TOC is used as the index of assessing the wastewater quality. The results are as follows; EFD-A doesn't contain the optical brighteners, VOCs, and arsenic. The optimal washing conditions for EFD-A are 3 g/L concentration, 40 ℃ washing temperature, and 30 min washing time. The soil removal efficiency is about 71 %, which was similar to or somewhat superior to that of PD1, PD2, and LD4. TOC is 63.5 %, which is about 15 % lower than the discharge limit. Through this study, the developed detergent EFD-A can be used as a safe and eco-friendly detergent for the human body and the environment.

A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank (고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구)

  • JI-QIANG LI;HENG XU;JI-CHAO LI;JEONG-TAE KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.