• Title/Summary/Keyword: temperature shock

Search Result 741, Processing Time 0.023 seconds

A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body (초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구)

  • Seo D. K.;Seo J. I.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

A Study on Thermal Shock Characteristics of Functionally Gradient Ceramic/Metal Composites (경사기능성 세라믹/ 금속 복합재료의 열충격특성에 관한 연구)

  • Song, Jun-Hee;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2134-2140
    • /
    • 1996
  • This study was carried out to anlayze the heat-resistant characteristics of functionally gradient material(FGM) composed with ceramic and metal. The thermal fracture behavior of plasma-sprayed FGM and conventional coating material(NFGM) was exaimined by acoustic emession technique under heating and cooling. Furnace cooling and rapid cooling tests were used to examine the effect of temperature change under various conditions, respectively. At the high temperature above $800^{\circ}C$, it was shown that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys (무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

Evaluation of Reference Temperature on Pressurized Thermal Shock for Domestic Pressurized Water Reactors (국내 가압경수형 원자로에 대한 가압열충격 기준온도 평가)

  • Choi, Young Hwan;Park, Jeong Soon;Jhung, Myung Jo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.42-46
    • /
    • 2010
  • The evaluation method for the failure frequency of reactor vessel under pressurized thermal shock(PTS) is developed using probabilistic fracture mechanics. The probabilistic reactor integrity evaluation code, named R-PIE code, is developed. The validity and uncertainty of the R-PIE code is investigated. The reactor failure frequencies under PTS for Kori-1 nuclear power plant and other type of domestic nuclear power plants are evaluated. The reference PTS temperature for domestic nuclear power plants is obtained for the rule making against PTS failure.

  • PDF

Evaluation of High Temperature Abrasion Resistance of Spray-Coated Grate Bar (용사 코팅된 그레이트바의 고온 내마모 특성 평가)

  • Cho, Hee-Keun;Ahn, Jin-Hyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2017
  • The grate bar, a component used in steel mills, is used in harsh environments where external disturbances such as high temperature, abrasion, corrosion, and impacts are present. Therefore, in this study, spray-coating was performed on the most severely affected surface to extend the lifetime of the grate bar. The thermal and mechanical properties of the sprayed coated bars were investigated based on the performances under abrasion, thermal shock, tension, and sand blasting, and the microstructures by microscope. By analyzing the thermal and mechanical properties of the uncoated original grate bar and coated grate bar and comparing them with one another, the physical performance improvement of the coated grate bar can be verified.

A Study of Inspection Module for Verifying Reliability on Railway Vehicle (철도차량 검측모듈의 신뢰성 검증 시험 연구)

  • Na, Kyung-min;Park, Young;Kwon, Sam-young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1155-1161
    • /
    • 2017
  • This study examines environmental performance of the arcing measurement module according to international standards. The module assesses the collected current performance using a computer system. The module is required to assess environmental impact resulting from electromagnetic waves, shock and temperature change during train operation. The test includes testing EMI/EMC, vibration, shock and temperature cycling for interface between trains and the arcing measurement module. The module test items were determined in compliance with the standards suggested by the International Electrotechnical Commission (IEC) and Europaische Norm (EN). This study describes the method of test, test equipment operation and how to choose relevant performance standards. The analysis and test results of environmental performance for the module based on computer system are described in this study.

Thermal Fatigue Life Prediction of Engine Exhaust Manifold (엔진 배기매니폴드의 열피로 수명 예측)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.

$^{13}C$ NMR Studies of Metabolic Pathways Regulated by HSP104 in Saccharomyces cerevisiae

  • 이경희;강수임;Susan Lindquist
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 1998
  • HSP104 protein in Saccharomyces cerevisiae is known to provide thermotolerance when induced by various kinds of stresses, such as a mild heat shock, ethanol, and hypoxia. It helps cells survive at an otherwise lethal temperature. Mechanisms by which HSP104 protein works are yet to be elucidated. In order to understand a molecular basis of thermotolerance due to HSP104 protein induced by a mild heat shock, studies on respiratory pathways were carried out in the wild type as well as in the hsp104 deleted mutant. Especially the degree of 13C-acetate incorporation into glutamate-C4 was examined for both strains using 13C-13C homonuclear spin coupling measurements, since glutamate is in a rapid equilibrium with α-ketoglutarate in the TCA cycle. In addition, the temperature effects on the rate of 13C incorporation are compared with or without HSP104 protein expressed. Finally, the inhibitory effect of HSP104 on the respiration pathway was confirmed by the measurements of oxygen consumption rates for both strains.

Prandtl-Meyer Expansion Through a Small Wavy Wall of Supersonic Flow with Condensation in a Channel (유로내에서 응축을 수반하는 초음속 유동의 미소진폭 파형벽에 의한 Prandtl-Meyer 팽창)

  • 권순범;안형준;선우은
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1582-1589
    • /
    • 1994
  • The characteristics Prandt1-Meyer expansion of supersonic flow with condensation through a wavy wall in a channel are investigated by experiment and numerical direct marching method of characteristics. In the present study, for the case of moist air flow in the type of indraft supersonic wind tunnel, the dependency of location of formation and reflection of the oblique shock wave generated by the wavy wall and the distribution of flow properties, on the specific humidity and temperature at the entrance of wavy wall and the attack angle of the wavy wall to the main stream is clarified by schlieren photograph, distribution of static pressure and Mach number, and plots of numerical results. Also, we confirm that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.