• Title/Summary/Keyword: temperature rise test

Search Result 276, Processing Time 0.026 seconds

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Multi-phase Accelerating Test Method of Thermal Aging Considering Heat Generation of Electric Equipment (전기기기의 발열을 고려한 다단계 가속열노화 방법)

  • Lim, Byung-Ju;Park, Chang-Dae;Chung, Kyung-Yul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • Thermal aging test is performed to qualify the life time of equipment in thermally aged condition. Due to long life time more than 10 years like as in power plant, the equipment is subjected to the accelerated thermal aging condition which is able to shorten the long aging test period by increasing aging temperature. Normally, conservatism of thermal aging test causes to impose unbalanced and excessive thermal load on components of the equipment, and deformation and damage problems of the components. Additionally, temperature rise of each component through heat generation of the electric equipment leads to long-term problem of the test period. Multi-phase accelerating aging test is to perform thermal aging test in multiple aging conditions after dividing into groups with various components of equipment. The groups might be classified considering various factors such as activation energy, temperature rise, glass transition temperature and melting temperature. In this study, we verify that the multi-phase accelerating aging test method can reduce and equalize the thermal over load of the components and shorten aging test time.

The Influence of Specimen Volume on the Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승량에 미치는 시험체 용적의 영향)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.659-666
    • /
    • 2012
  • To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise ($Q_{\infty}$) and the reaction factor (r) of TBC were the lowest. Test results also showed that $Q_{\infty}$ and r changed with respect to the volume of test specimen. $Q_{\infty}$ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.

Equipment for Measuring the Adiabatic Temperature Rise of Concrete by Compensating Heat Loss (열손실량 보정을 통한 콘크리트 단열온도상승량 예측 장치)

  • Jin, Eun-Woong;Kim, Chin-Yong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Adiabatic temperature rise test for predicting heat of hydration in mass concrete is especially inconvenient in the field. In order to overcome the problem, the equipment to effectively and conveniently measure semi-adiabatic temperature change was developed. The main objective of this paper is to propose a new and simple equipment for measuring semi-adiabatic temperature rise by using insulation bottles. In order to predict exact heat loss of concrete using this device, it is required to assume the specific heat loss coefficient of the device by water temperature change inside the experimental device. According to experimental and analytical results, the adiabatic temperature rise does not have significant differences in changes of temperature and humidity of air, as well as initial temperature of water. By comparing adiabatic temperature rise tests, the equipment for measuring semi-adiabatic temperature change can be used to predict the hydration heat of concrete within sufficient accuracy.

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Temperature Rise Test and Temperature Distribution Analysis of Pole Mount Mold Transformer with One-body Molding (일체형 주상용 몰드 변압기의 온도분포 및 특성 비교)

  • Cho, Han-Goo;Lee, Un-Yong;Kang, Tack-Sou;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1154-1159
    • /
    • 2006
  • The mold transformers have been widely used in underground substations of large building and have some advantages when compared with oil-transformer. Those advantages are low fire risk, environmental compatibility, compact size and high reliability. The mold transformer is generally known to have cooling duct between low voltage and high voltage coil. To achieve better compact structure and low loss, mold transformers made by one body molding method has been developed. Nevertheless, such kinds of transformer need better cooling method because heat radiation between each winding is still of problem. The life of transformer is significantly dependent on the thermal behavior in windings. Many designers have calculated temperature distribution in transformers and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, the temperature distribution analysis of 100 kVA pole mold transformer for power distribution were investigated by FEM program and the thermal analysis results were compared with temperature rise test.

The Hydration Heat of High Strength Concrete (고강도 콘크리트의 단열온도상승에 관한 실험적 연구)

  • 노재호;한정호;조일호;박연동;정재동;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.209-214
    • /
    • 1994
  • The heat of hydration of cement causes the intemal temperature rise at early age, particulay in massive concrete structures. As the results of the temperature rise and restraint condition, the thermal stress amy induce cracks in concrete. The prediction of the thermal stress is very important in design and consturction slages in order to control the cracks in mass concrete. In this study, the temperature rise of high strength concrete due to the heat of hydration is investigated. Test variables are type and content of binder. As the results, the temperature rise is imcreased with increasing cement content. However, the increament is decreased in higher cement comtnet range. Fly ash is effictive in the reduction of hydration heat.

  • PDF

A Study on the Hot Spot Temperature in 154kV Power Transformers

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The life of a power transformer is dependent on the life of the cellulose paper, which influenced by the hot spot temperature. Thus, the determination of the cellulose paper's life requires identifying the hot spot temperature of the transformer. Currently, however, the power transformer uses a heat run test is used in the factory test to measure top liquid temperature rise and average winding temperature rise, which is specified in its specification. The hot spot temperature is calculated by the winding resistance detected during the heat run test. This paper measures the hot spot temperature in the single-phase, 154kV, 15/20MVA power transformer by the optical fiber sensors and compares the value with the hot spot temperature calculated by the conventional heat run test in the factory test. To measure the hot spot temperature, ten optical fiber sensors were installed on both the high and low voltage winding; and the temperature distribution during the heat run test, three thermocouples were installed. The hot spot temperature shown in the heat run test was $92.6^{\circ}C$ on the low voltage winding. However, the hot spot temperature as measured by the optical fiber sensor appeared between turn 2 and turn 3 on the upper side of the low voltage winding, recording $105.9^{\circ}C$. The hot spot temperature of the low voltage winding as measured by the optical fiber sensor was $13.3^{\circ}C$ higher than the hot spot temperature calculated by the heat run test. Therefore, the hot spot factor (H) in IEC 60076-2 appeared to be 2.0.

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

The Temperature Distribution and Thermal Stress Analysis of Mold transformer (주상용 몰드변압기의 온도분포와 열응력 해석)

  • 조한구;이운용;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.387-390
    • /
    • 2000
  • The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. Therefore design time and design cost are decreased by numerical analysis. In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The temperature change according to load rates of transformer also have been investigated. We have carried out temperature rise test and test results are compared with simulation data.

  • PDF