• Title/Summary/Keyword: temperature rise

Search Result 1,939, Processing Time 0.031 seconds

An Experimental Study on the Semi-Adiabatic Temperature Rise Test of Concrete Considering Outside Temperature and Specimen Size (외기온도 및 시험체 크기를 고려한 콘크리트의 간이-단열온도 상승시험에 관한 실험적 연구)

  • On, Jeong-Kwon;Kim, Young-Sun;Moon, Hyoung-Jae;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.563-571
    • /
    • 2021
  • Recently, due to the increase in high-rise apartment and residential-commercial complex buildings, a number of mega-class mass concrete members with a thickness of 3m or more have been designed. As the construction of mass concrete such as transfer beam and slab is increasing not only in foundation members but also in special structures, research on reducing temperature cracks in mass concrete is being conducted. To review temperature cracks in mass concrete, it is important to review the thermal properties of concrete, but it is difficult to use an adiabatic temperature rise tester in the field, so the semi-adiabatic temperature rise test is mainly used. In this study, to improve the accuracy of the results of concrete heat characteristics gained by the semi-adiabatic temperature rise test, various factors affecting heat loss compensation and methods were reviewed and presented.

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

IN VITRO STUDY OF TOOTH TEMPERATURE CHANGE DURING POLYMERIZATION REACT10N OF THE COLD-CURED RESINS USED IN PROVISIONAL CROWN AND FIXED PARTIAL DENTURES (자가 중합 임시수복용 레진의 경화 시 외부환경 변화에 따른 치아의 온도변화)

  • Oh, Wu-Sik;Baik, Jin;Kim, Hyung-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.503-513
    • /
    • 2006
  • Statement of the problem: The cold-cured resins used in fabrication of the provisional crown and fixed partial dentures could cause pulpal damage by heat generated during exothermic polymerization reactions. Purpose: In this in vitro study investigates the how external conditions such as material of the matrix, thickness of the matrix and thickness of dentin affect the temperature of the tooth during polymerization reaction of the cold-cured resins. Material and methods : To measure the temperature of the resin, metal die was maintained to the temperature of $37^{\circ}C$ with water bath to simulate the temperature of thetooth and thermocouple was placed in the center of the metal die. Acrylic pipe was cut in height of 1, 2, 3, 6, 10 mm and placed on the metal die and mixed resin was pored in the acrylic pipe As the resin polymerized temperature was recorded with the thermometer. Temperature of the resin using matrix was recorded by using the individual tray relieved in different thickness 2, 5, 7, 10 mm. The material of the matrix was irreversible hydrocolloid impression material, vinyl polysilloxane impression material and vacuum-formed template Temperature rise of the resin using different thickness of tooth section was record ed by placing tooth section on the metal die and placing resin over the tooth section. Results : Conclusion : 1. Temperature rise increased as the thickness of the resin increased but there was no significant differences over 3 mm thickness of the resin. 2. The lowest temperature rise was showed in irreversible hydrocolloid impression material and vinyl polysilloxane impression material vacuum-formed template as in orders. 3, Temperature rise of the resin decreased regardless of the thickness of the matrix when vinyl polysilloxane impression material was used as the matrix. 4 When irreversible hydrocolloid impression material was used as matrix, the temperature rise of the resin decreased as the thickness of the matrix increased and there was no temperature rise when thickness of the matrix reached 10 mm, 5. The temperature rise of the resin did not decreased when Polypropylene vacuum-formed template was used as the matrix. 6, The temperature of the resin increased as the thickness of the dentin decreased.

A Study on Air Temperature Difference between Windward and Leeward Side at High-rise Buildings (고층건물 풍상면과 풍하면의 기온차)

  • Jin, Ri;Cui, Hua;Yu, Jin-Hang;Ku, Hee-Yeong;Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • To investigate the air temperature difference between windward and leeward side at high-rise building area, the air temperature and relative humidity data were observed for 10 minute interval from July 9, 2011 to November 30, 2011. The observed data were compared, analyzed and examined to illustrate air temperature between windward side (H Apartment) and Leeward side (W Apartment). The diurnal and seasonal variation of air temperature difference between windward and leeward site were also investigated. After the analysis, the overheat of windward side by $0.4^{\circ}C$ irrespective short distance of two observation positions. It was also lower than those of surrounding air temperature observing stations. It is mainly due to the air temperature decreasing effects of leeward side of high rise buildings.

A Study on the Surface Temperature Rise in Spur Gear Part I - Flash Temperature (Spur Gear의 표면온도상승에 관한 연구 Part I - Flash Temperature)

  • 김희진;문석만;김태완;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.251-257
    • /
    • 2000
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaeger's formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along line of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

Operating Temperature and Time of Rate of Rise Heat Detector (차동식 열감지기의 작동온도와 작동시간)

  • 류호철;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 1994
  • Rate of rise heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, simple equations were derived which can be predicted the response time and temperature of the rate of rise heat detector with the results of hot wind tunnel tests and compartment fire experiments.

  • PDF

The Reduction of Temperature Rise in High Strength Concrete (고강도용 콘크리트의 온도상승 저감대책)

  • 문한영;문대중;하상욱;서정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.133-139
    • /
    • 1996
  • As construction technology advances, most of civil engineering structures are becoming larger and taller. Therefore, high strength concrete is necessary for them. For high strength concrete, it needs a large amount of unit cement content and low water-cement ratio inevitably, so that a large amount of heat occurs in concrete. The thermal cracks make the durability and quality of concrete structures become worse, result from temperature rise and thermal stress due to heat of hydration. In this study, the proposal of using ground granulated blast furnace slag, fly ash and chemical admixtures was investigated to decrease the temperature rise of concrete.

  • PDF