• Title/Summary/Keyword: temperature profiles

Search Result 995, Processing Time 0.022 seconds

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

Simulation of Physical Chemistry Phenomena Inside a Naturally Smoldering Cigarette (자연 연소중인 궐련내에서 일어나는 물리화학적 현상의 시뮬레이션)

  • 오인혁;김기환;정경락
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.87-94
    • /
    • 1998
  • After we made the computer source code with mathematical model of Muramatsu et al. that was expressed by the set of simultaneous first-order ordinary differential equations in evaporation-pyrolysis zone of cigarette, we simulated the distribution profiles of temperature and density of flue-cured tobacco. Those equations were solved numerically with the Runge-Kutta-Gill algorithm assuming step size of 0.025mm by Muramatsu at at,, but in this study the advanced algorithm of Runge-Kutta 4th Order assuming step size of 0.0005mm. The initial conditions and physical parameters of Muramatsu et at. were used for solving them. The calculated values corresponded well with results of Muramatsu et al., especially the gradient of the temperature profile increased with smoldering speed and the thickness of the evaporation-pyrolysis zone decreased with increasing of smoldering speed. On the other hand, the temperature gradient decreased with increasing of the effective thermal-conductivity value and the thickness of the evaporation-pyrolysis zone increased with the effective thermal-conductivity value.

  • PDF

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber (수냉식 수직평판 흡수기의 액막 열 및 물질전달에 관한 수치적 연구)

  • Thanh-Tong Phan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.593-602
    • /
    • 2004
  • This paper is a study on the model of simultaneous heat and mass transfer process in the absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. The model can predict temperature and concentration profiles as well as the effect of Reynolds number on them. Also. the variations of the absorption heat and mass fluxes. and the heat and mass transfer coefficients have been investigated. The numerical result shows that the interface temperature and concentration decrease as film Reynolds number does. The absorption heat and mass fluxes, and the heat and mass transfer coefficients get their maximum values adjacent to the inlet solution. Analyses on a constant wall temperature condition have been also carried out to exam the reliability of the present numerical method by comparing to previous investigations.

Laminar Diffusion Flame in the Reacting Mixing Layer (반응혼합층의 층류확산화염)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

A Study on the Prediction of Plate Temperature in Indirectly-Fired Continuous Heat Treatment Furnace (간접 가열방식의 연속식 열처리로내 판(Plate) 온도해석에 관한 연구)

  • Kim Young-Deuk;Kang Deok-Hong;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.514-522
    • /
    • 2006
  • This study has been performed to predict the transient thermal behavior of the plate in indirectly-fired continuous heat treatment furnace. The temperature profiles in the plate are determined solving the transient one-dimensional heat conduction equations. To verify the validity of the present numerical results, the present results obtained from the transient analysis are compared with those of experiments. Extensive parametric investigations are performed to examine the effects of the emissivities of the plate and refractory, plate thickness and velocity, as well as the gas temperature, on the thermal behavior of the plate.

Unsteady Thermal Stratified Flow and Heat Transfer in a Horizontal Feedwater Pipe (수평급수배관 내에서의 비정상 열성층유동 및 열전달)

  • Yeom, Hak-Gi;Park, Man-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.680-688
    • /
    • 1996
  • In this paper, the unsteady state calculational model is proposed for the thermal stratification analysis in the feedwater line of the PWR plant. By defining dimensionless parameters in the two-dimensional polar coordinate system and applying SIMPLE algorithm, the temperature and flow profiles due to the thermal stratification are obtained. Base on the fact that the most significant condition occurs when the fluid temperature difference between the piping ends reaches as high as 166.deg. C, the present result shows that max. Dimensionless temperature difference of 0.6 (about l00.deg. C) obtained between hot and cold sections of pipe wall at dimensionless time 47.0.

An Experimental Study on the Diffusion Flame with Swirl (선회 확산 화염에 관한 실험적 연구)

  • Gwon, Gi-Rin;Kim, Jong-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.3
    • /
    • pp.184-192
    • /
    • 1991
  • In many combustion systems, swirling combustion air is extensively applied as an aid for stabilization of high intensity combustion pocesses. Swirl, generally, causes significant effects on the flow field which, in turn, determines the size, shape, and stability of flames, and combustion intensity. The purpose of this study is to investigate the effect of swirls on flames produced from a model combustor designed in this paper. In order to impart swirls to the combustion air, a movable block swirl generator was used. Temperature distribution and radiative heat flux along the centerline of the swirling flame were measured. Data obtained from these swirl flows can be used as design data for high intensity or high efficiency combustion systems. The results obtained are summarized as follows: 1. Flame temperature profiles were measured at various swirl number. 2. The axial distance for maximum temperature from the centerline of burner increased as the swirl number increased. 3. Radiative heat flux increased as the swirl number and axial distance from burner increased.

  • PDF

Post-operating Techniques for Non-toping Vulconization Process of Electric Cable Sheath in Autoclave (Autoclave를 이용한 전선피복용 고무의 무테이핑 가황공정시 후처리 운전기술)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.103-109
    • /
    • 1998
  • The determination method of successful operation conditions to control the temperature and pressure in autoclave after non-taping vulcanization process was represented. Heat and mass balances were constructed to predict the mass flow rates of air, steam, and condensed water into or from autoclave when the temperature and pressure in the autoclave were to be controlled in the desired profiles. The balance equations were solved by appropriate mathematics, and the solution was applied to an autoclave system where the temperature and pressure were linearly decreased. The resulting solutions were illustrated in graphs.

  • PDF

Air Distribution Performance According to the Gap Opening of a Temperature Controlled Diffuser (냉난방 온도감지 디퓨져의 간극변화에 따른 기류분포 특성)

  • Han Hwataik;Shin Min-Woo;Yom Chol-Min;Choi Sun-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.180-185
    • /
    • 2006
  • This study has been conducted in order to develop a temperature-controlled round pan diffuser with variable-openings. Flow visualization was performed to investigate the airflow patterns according to gap openings. The velocity profiles were measured using an omni-directional anemometer for two cases, i.e. a horizontal and a vertical discharge conditions. Numerical simulation also confirms there is a narrow range of gap openings where a horizontal discharge shifts to a vertical discharge. The air distribution performance index increases abruptly when the air discharge shifts from vertical to horizontal direction.