• Title/Summary/Keyword: temperature limit

Search Result 1,358, Processing Time 0.032 seconds

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Electrical Conductivity of MgO-doped Cr2O3 (M\ulcorner를 첨가한 Cr2O3의 전기전도도)

  • 박진성;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 1987
  • The microstructure and the electrical conductivity of MgO-doped Cr2O3 were investigated as a function of oxygen partial presure, temperature, and MgO content. The grain size was estimated about 1.0$\mu\textrm{m}$. The solubility limit is increased with oxygen partial pressure. Above the solubility limit of MgO in Cr2O3, the spinel phase(MgCr2O4) is formed by the reaction of MgO and Cr2O3. The electrical conductivity of MgO-doped Cr2O3 within the solubility limit is increased with MgO content. Above the solubility limit, however, it is decreased with increasing MgO content because of the formation of the spinel phase.

  • PDF

Fabrication and characteristics of limit-current type oxygen sensor with monolith aperture structure (일체화된 Aperture 구조의 한계전류형 산소센서의 제작 및 특성)

  • Oh, Young-Jei;Lee, Deuk Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.273-280
    • /
    • 2008
  • Monolith aperture-type oxygen sensors with simple structure of YSZ(pin-hole)/Pt/ YSZ(solid electrolyte)/Pt were fabricated by co-firing technique. To enhance the yield of productivity, a couple of YSZ green sheets for diffused barrier and solid electrolyte were prepared by tape-casting and co-firing method. The limit current characteristics of the oxygen sensors were measured between 500 and $650^{\circ}C$ The heating temperature of $600^{\circ}C$ was optimum as a portable oxygen sensor in the range of oxygen concentration from 0 to 75 vol%. Linear proficiency of limit current behavior as a function of oxygen concentration was controlled by the variation of aperture dimension. The fabricated oxygen sensors showed the stable sensing output for 30 days. Gas leakage in bonding area due to warping, cracking and thermal cycling was not found in the period.

Development of Algorithm to Predict the Superheat-limit Explosion(SLE) Conditions of LNG Using Continuous Thermodynamics (연속열역학을 이용한 액화천연개스(LNG)의 과가열약체 폭발현상 예측에 대한 연구)

  • Shin, Goun-Soup;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.5-13
    • /
    • 1995
  • Natural gas, which is getting more important as a fuel, should be liquefied and shipped in a special tank. During transportation, a spill of liquefied natural gas(LNG) could occur by a collision or even an accident. As a result, violent explosion called the superheat-limit explosion(SLE) can take place in some cases, unexpectedly. Such explosion may result from the formation of a superheated liquid which has attained the superheat-limit temperature when hot(water) and cold(LNG) liquids come into contact. Natural gas mixtures can be considered as discrete light components plus continuous heavy fractions where several continuous distribution function can be adopted. This work is aiming at prediction of the superheat-limit explosion condition by suing continuous thermodynamics development of algorithm to predict.

  • PDF

Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel (지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구)

  • Lee, Hyang-Beom;Lee, Byung-Chul;Kim, Jung-Hoon;Nam, Yong-Hyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

Study on Local Buckling of District Heating Pipes Using Limit State Design (한계상태 설계법을 이용한 지역난방 열배관의 국부좌굴 연구)

  • Kim, Joo-Yong;Lee, Sang-Youn;Ko, Hyun-Il;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1829-1836
    • /
    • 2010
  • The district heating system distributes the heat generated from a cogeneration plant to wider locations. In this process, the district heating pipe (DHP) is subjected to internal and external loadings. The internal loadings are generally caused by the operating conditions such as water temperature and internal pressure. Frictional interactions between the pipes and the soil contribute to the external loadings. Thus, investigation of the mechanisms of failure of DHPs will help to guarantee both mechanical stability and heating efficiency. In this study, we investigate the local buckling of DHPs using limit state design (LSD). Two methods are considered: the use of the limit state for the width-thickness ratio and the use of the limit state for the strain. The results are used to confirm that the DHP is stable under local buckling. Finally, we suggest a minimum preheating temperature for avoiding local buckling.

The Effect of Degradation on the Fretting fatigue for 1Cr-0.5Mo Steel (1Cr-0.5Mo 강의 재질열화가 프레팅 피로거동에 미치는 영향)

  • Kwon, Jae-Do;Choi, Sung-Jong;Kim, Kyung-Soo;Bae, Yong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1979-1985
    • /
    • 2003
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases in 50-70% of the plain fatigue strength. This may be observed in the fossil power plant and the nuclear power plant used in special environments and various loading conditions. The thermal degradation of material is observed when the heat resisting steel is exposed for long period time at the high temperature. In the present study, the degraded 1Cr-0.5Mo steel used for long period time at high temperature (about 515$^{\circ}C$) and artificially reheat-treated materials are prepared. These materials are used for evaluating an effect of thermal aging on the fretting fatigue behavior. Through the experiment, it is found that the fretting fatigue endurance limit of the reheat-treated 1Cr-0.5Mo steel decreased about 46% from the non-fretting fatigue endurance limit, while the fretting fatigue endurance limit of the degraded 1Cr-0.5Mo steel decreased about 53% from the non-fretting fatigue endurance limit. The maximum value of fatigue endurance limit difference is observed as 57%(244 MPa) between the fretting fatigue of degraded material and non-fretting fatigue of reheat-treated material. These results can be a basic data to a structural integrity evaluation of heat resisting steel considered to thermal degradation effect.

A Study of Superheater Temperature Control on an Once Through Boiler in Thermal Power Plant (화력발전소 관류보일러의 과열기 온도제어에 관한 연구)

  • Lee, Jo-Hyun;Jeong, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2022-2027
    • /
    • 2009
  • An supercritical once through boiler system has been used in the korea standard-type thermal power plant. It is critical in boiler operation that superheater temperature should be controlled within the specified limit. In this paper, control logic scheme is suggested for superheater temperature in once through boiler. Finally the simulation result using process model based simulator shows the validity of suggested control logic.

Quality Optimization in Red Pepper Drying (고추건조에 있어서 품질 최적화)

  • Lee, Dong-Sun;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.655-661
    • /
    • 1989
  • Optimal drying conditions consisting of air temperature and relative humidity were searched by the simulation-optimization technique for minimizing quality changes in red pepper drying. Optimized drying conditions were analysed in the viewpoint of quality change kinetics and effects of control variables on the state variables. Optimal drying conditions were nearly same in both cases for carotenoid maximization and browning minimization. In two staged optimized drying, relative humidity took a lower search limit of about 10%, and air temperature in the first stage was near the lower limit of $50^{\circ}C$ and in second stage increased to a higher temperature varying with total drying time and stage changing time. Response surface analysis of time invariable drying confirmed the location of the optimal point lying on the vertex of lower limit humidity and a lowest drying temperature which ensures to attain target moisture of 0.2g water/g dry solid. Two stage drying can attain the higher objective function of quality by 3-5% than time invariable drying for shorter total drying times.

  • PDF

Experimental and Analytical Evaluation of Forming Characteristics for AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금판재의 성형특성 평가를 위한 실험적·해석적 연구)

  • Lee, M.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • This study aimed at providing an experimental database for the mechanical properties of AZ31B magnesium alloy sheet such as stress-strain curve, yield stress, R-value and forming limit diagram(FLD) at various strain-rates and temperatures. Tensile tests were carried out on specimens having the orientations of $0^{\circ}$, $45^{\circ}$ and $90^{\circ}$ to the rolling direction with different crosshead speeds in the range between 0.008 and 8 mm/s at temperature from 25(room temperature) to $300^{\circ}C$. The influence of the specimen gage length on the tensile properties was investigated. FLD tests were performed at punch speed of 0.1 and 1.0 mm/s in the same temperature range as that of the tensile tests. Swift cup tests were conducted to verify the usefulness of the material database and the reliability of the finite element analysis(FEA). The effects of strain-rate as well as temperature were taken into account in these simulations. It was shown that the FLD-based failure was reasonably well predicted by the thermal-deformation coupled analysis for this rate-sensitive material.