• Title/Summary/Keyword: temperature influence

Search Result 4,488, Processing Time 0.045 seconds

Numerical Study of Radial Temperature Gradient Effect on Taylor Vortices (반경방향으로의 온도구배가 Taylor Vortex에 미치는 영향에 대한 수치적 연구)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Yoon, Dong-Hyeog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.900-908
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Taylor Vortex flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the experimental results currently available. It turns out that wavy spiral vortices are generated by increasing temperature gradient. We classify flow patterns for various Grashof numbers based on the characteristics of flow fields and spiral vortices. The correlation between Grashof number with wave number shows that the spiral angle and size of Taylor vortices increase with increasing temperature gradient. Temperature gradient does not have a great influence on the heat transfer rate of the cylinder surfaces.

Temperature Characteristics for Traction Motor of Korean High Speed Train (한국형 고속전철 전동기 온도 특성)

  • Han, Young-Jae;Kim, Ki-Hwan;Lee, Tae-Hyoung;Koo, Hun-Mo;Kim, Jeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.265-267
    • /
    • 2006
  • There are various elements that have influence on safety and reliability of high-speed railway vehicles. Among them, mechanical characteristics of traction motors are very important. Therefore, we verified that temperature characteristics have influence on damage and durability of these parts. We designed a measurement system for temperature test, and could measure the temperature of each device by the system. As the result of temperature test, we could confirm that the traction motors on Korean High-Speed Train satisfy the criteria. From this test, we get information of the traction motor about the temperature characteristic during running speed and running time.

  • PDF

Thermal Performance of Solar Thermal System by On-Off Differential Temperature of Differential Temperature Controller (차온제어기의 On-Off 온도설정에 따른 태양열 시스템 열성능)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • On-off differential controller is one of the very important components which affect the system performance of the active solar thermal system. In this study, analyses were made regarding the influence of "on-off" setting temperature on the system efficiency and on the electrical consumption by circulation pump. This study was performed by experiment as well as the computer simulation using TRNSYS program. The simulation system was developed in this study was verified the its reliability by the experimental results. As a results, the turn off temperature(${\Delta}T_{off}$) is much more influence than the turn on temperature(${\Delta}T_{on}$) on the system efficiency. It is more clear and sensitivity in winter season. Finally the optimum on-off setting value and the system on-off pattern according to the several different kind of system was also represented.

A Consideration On The Surface Temperature Reducing Effect Of Green Roof System Flat Roof (옥상녹화 평지붕의 표면온도 저감효과에 대한 고찰)

  • Lee, Doo-Ho;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • This study analyzed the measured value came out by the field test to verify the surface temperature reduction of the flat roof due to green roof, and confirmed the influence of the green roof based on it, and assessed the possibility of saving structures' energy and reducing $CO_2$ emission of structures. For the actual measurement, the differences of the average atmospheric temperature of the green roof and non-green roof flat roof were $8.67^{\circ}C$ and $0.787^{\circ}C$, and the average floor temperature gaps were $11^{\circ}C$ and $2.008^{\circ}C$ in October and November respectively. It was expected that if it's measured on around summer solstice that the temperature gets higher, the deviation of the surface temperature should be bigger, and it was confirmed that the green roof eventually raises insulating effect of structures and will influence on cooling and heating effects such as energy saving and insulating.

Temperature-dependent Differences in Heading Response at Different Growth Stages of Rice

  • Lee, HyeonSeok;Choi, MyoungGoo;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lim, YeonHwa;Lee, ChungGen;Choi, KyungJin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.213-224
    • /
    • 2019
  • There is an increasing frequency in the occurrence of abnormal weather phenomena such as sharp increases and decreases in temperature. Under these weather conditions, the heading time of rice changes unexpectedly, which poses problems in agriculture. Therefore, we investigated the effect of temperature on the heading response at different growth stages in rice. During the period from transplanting to heading, the plants were subjected to different temperature treatments, each for a 9-day period, to observe the heading response. For the heading date analysis, "heading date" was defined as the number of days from transplanting to the appearance of the first spikelet. We found that the influence of temperature increased in the order of rooting stage, followed by meiosis, early tillering, spikelet differentiation, and panicle initiation stage in all ecological types and cultivars. In particular, unlike the results reported previously, the effect of temperature on heading during the photo-sensitive period was very small. Meanwhile, the influence of temperature on vegetative growth response at different growth stages was not consistent with heading response. These results can be used as basic data for predicting the variation in heading date owing to temperature variation at each growth stage. In addition, we propose that the concept of day length should be included in determining the influence of temperature on the photo-sensitive period.

Influence of Mold Temperature on the Thickness of a Skin Layer and Impact Strength in the Microcellular Injection Molding Process (초미세 발포 사출공정에서 금형의 온도가 스킨층 두께와 충격강도에 미치는 영향)

  • Lee J.J.;Cha S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1630-1635
    • /
    • 2005
  • The microstructure of the parts made by the microcellular injection molding process influence properties, including impact strength, tensile strength and density of material. Microstructure of microcellular plastics is divided into core foaming region and solid skin region. Core foaming region is influenced by pressure drop rate, viscosity and cell coalescence. However, actual mechanism of the skin layers is not known despite its importance. The study on the skin layer is getting important because foaming rate of the plastics is determined by the thickness ratio of the skin layer. Especially in case of large molded part, control of the skin layer is needed because skin layer thickness is changed largely. Therefore it is necessary to study variation in skin layer thickness with processing parameters. In this paper, the influence of temperatures in the mold cavity on the skin layer s thickness was also addressed. In addition, the relationship between the temperature distributions across cavity of the mold with impact strength on parts made with the microcellular injection molding process was addressed. In addition, the method to predict the variation in skin layer thickness with mold temperature is discussed.

  • PDF

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

Influence of Water Temperature on Air Temperature around Eastern and Western Coastal Areas of the Korean Peninsula during Winter (동계 한반도 동·서 연안역 기온에 미치는 수온의 영향)

  • Hong, Chul-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • The influence of water temperature (WT) on air temperature (AT) in the eastern and western coastal regions of the Korean peninsula in the winter was investigated using historical data from the Korean Meteorological Agency (KMA) and the National Institute of Fisheries Science (NIFS), focusing on the relationship between AT and WT. The data analysis shows that, during winter, the AT is generally higher by +1.9 to $+2.7^{\circ}C$ at Kangreung ($37.2^{\circ}N$) in the eastern region than at Inchon ($37.4^{\circ}N$) in the western region, i.e., the AT in the eastern region of the Korean Peninsula tends to be higher overall than that in the western region when similar latitudes are compared. On the other hand, in the winters of 1977-2006, the WT at Sokcho was higher by $+0.8^{\circ}C$ (January) to $+2.3^{\circ}C$ (March) than that at Sochungdo, directly resulting in increased AT ($+1.22^{\circ}C$) at Sokcho. This study suggests that higher AT in the eastern region during winter is caused by the influence of water flow, such as the East Korean Warm Current in the East/Japan Sea.

A Study on Stress Distribution Using Boundary Element Analysis Due to Surface Coating in Sliding Contact (경계요소법을 이용한 미끄럼 접촉을 받고 있는 코팅층의 응력분포에 관한 연구)

  • Lee, Gang-Yong;Gang, Jin-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.304-311
    • /
    • 2001
  • The present work examines the influence of surface coating on the temperature and the thermo-mechanical stress field produced by friction due to sliding contact. A two-dimensional transient model of a layered medium submitted to a moving heat flux is prsented. A solution technique based on the boundary element method employing the multiregion technique is utilized. Results are presented showing the influence of coating thickness, thermal properties, Peclet number, and mechanical properties. It has been shown that the mechanical properties and thickness of coating have a significant influence on the stress field, even for low temperature increase. The effects of the ratios of shear modulus become more important for low temperature increase than the effects of the ratios of other mechanical properties.

The Effects of Sintering Temperature Influence on the Mechanical Property and Microstructure of Dental Zirconia Block (치과용 지르코니아 블록의 소결온도가 기계적 특성과 미세구조에 미치는 영향)

  • Jo, Jun-Ho;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • Purpose: Generally dental technicians clinically decide the sintering temperature of zirconia artificial teeth to match the color of the teeth. However, the sintering temperature influence the microstructure and mechanical strength of ceramic body. In this study, to evaluate the free choice of sintering temperature which leads to color the problems in zirconia false teeth, the variation of microstructure, mechanical strength, and colortone of zirconia ceramics according to the change of sintering temperature was investigated. Methods: Bar type specimens were prepared from commercial zirconia blocks by cutting and polishing into $0.8cm(L){\times}1.0cm(W){\times}4.8cm(H)$. Specimens were fired from 1,400 to $1,700^{\circ}C$ at $50^{\circ}C$ intervals and held for 1hour at highest temperature. Apparent porosity, water absorption, firing shrinkage, bulk density, bend strength, whiteness were tested. Microstructures were observed by SEM. Results: When fired above $1450^{\circ}C$, all specimens showed 0% apparent porosity and water absorption, 20% firing shrinkage, and $6.1g/cm^3$ bulk density regardless of firing temperatures. SEM photomicrographs showed grain growth of zirconia occurred above $1,600^{\circ}C$. Whiteness was also largely changed above this temperature. Maximum bend strength of 1,05MPa was obtained at $1,550^{\circ}C$. Bend strength lowered slightly above this temperature and showed $950{\ss}\acute{A}$ at $1,700^{\circ}C$. Conclusion: In order to fit the colortone of zirconia artificial teeth, arbitrary choice of firing temperature higher than $1,500^{\circ}C$, up to $1,700^{\circ}C$ did not influence the mechanical strength.