• 제목/요약/키워드: temperature distributions

검색결과 1,656건 처리시간 0.031초

가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究) (An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine)

  • 권기린;고장권;홍성찬
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

원통형 수증기 개질기의 경계 온도 분포에 따른 개질 가스 조성 변화 (Effect of Boundary Temperature Distributions on the Outlet Gas Composition of the Cylindrical Steam Reformer)

  • 김석;한훈식;김서영;현재민
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.383-391
    • /
    • 2011
  • Numerical simulations have been conducted for the cylindrical steam reformer having various boundary temperature distributions. $CH_4$, $H_2O$, CO, $H_2$ and $CO_2$ are often generated or destroyed by the reactions, namely the Steam Reofrming(SR) reaction, the Water-Gas Shift (WGS) reaction and the Direct Steam Reforming(DSR) reaction. The SR and the DSR reactions are endothermic reactions, and the WGS reaction is an exothermic reaction. The rate of reactions can be slightly controlled by artificially given boundary temperature distributions. Therefore, the component ratio of the gases at the outlet are different for various boundary temperature distributions, namely the constant, cubic and linear distributions. Among these distributions, the linear temperature distribution is outstanding for efficient hydrogen production of the steam reformer.

적외선 조사된 토양에 대한 열전달 모델 (Heat Transfer Model for Soil Irradiated by Infrared)

  • 강화석;이귀현;강위수;오재헌
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.449-455
    • /
    • 1996
  • The temperature distributions at various soil depths were predicted by heat transfer model during and after infrared irradiation on sand loam or loam soil. At each soil depth, predicted and measured temperature distributions were compared with using the mean relative percentage deviation and standard error. The mean relative percentage deviation was less than 10% between predicted and measured temperature distributions at each soil depth. Thus, it was concluded that the temperature distribution at each soil depth could be predicted satisfactorily by heat transfer model. Also, it is expected that these predicted temperature distributions can be used as basic information for determining the working speed of weeder and the size when the real weeder is constructed.

  • PDF

고정밀 공작기계주축계의 열특성 해석에 관한 연구 (A Study on the Thermal Characteristics of a High Precision Machine Tool Spindle)

  • 김용길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.47-51
    • /
    • 1996
  • Unsteady-state temperature distributions and thermal deformations of a spindle system are studied in this paper. Three dimensional model is built for analysis, and the amount of heat generation of bearing and the thermal characteristic values including heat transfer coefficient are estimated. Temperature distributions and thermal deformations of a model are analyzed using the finite element method and the termal boundary values. Numerical results are compared with the measured data. The results show that thermal deformations and temperature distributions of a high precision spindle system can be reasonably estimated using the three dimensional model and the finite element method.

  • PDF

모터내장형 주축의 온도분포해석에 관한 연구 (Temperature Distributions of High Precision Spindle with Built -in Motor)

  • 김용길;김수태;박천홍;김춘배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.624-628
    • /
    • 1996
  • Unsteady-state temperature distributions in the high precision spindle system with built-in motor are studied. For the analysis, three dimensional model is built for the high precision spindle. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficient. Temperature distributions are computed using the finite element method. Analysis results are compared with the measured data. Analysis shows that temperature distributions of high precision spindle system can be estimated resonably using the three dimensional model through the finite element method.

  • PDF

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

UV Laser Rayleigh Scattering을 이용한 $C_3H_8/O_2$ 화염에서 가스 성분의 농도 및 온도 분포 계측에 관한 실험적 연구 (Am Experimental Study on Measurement of Number Density and Temperature Distributions in $C_3H_8/O_2$ Flame by UV Laser Rayleigh Scattering)

  • 진성호;남기중;김회산;장래각;박승한;김웅;박경석;김경수
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.60-68
    • /
    • 1997
  • Rayleigh Scattering Cross Sections($\sigma$i) of various gases and the temperature distributions of premixes C3H8/O2 flame are measured by high power KrF(248nm) Exci- mer laser and ICCD camera. Results show that $\sigma$i of O2 and Propane(C3H8) gases agree well in the 5% error range, but of H2 has the more or less difference from the calcul- ated value by other groups. This is attributed to the low RS signal of H2 to Nosie level(S/N ratio). The temperature distributions of flame range out between 300K in the air and about 2000K in the burned area. In this temperature range, out system has the about 250K temperature resolution. Because low RS signals in the reaction area with high temperature are affected highly by noises, temperature uncertainty of this area is relatively high to another part of flame. Experimental results show that UV Rayleigh Scattering can be used for the measurement of mixing ratio of mixed gases and the temperature distributions of flame. Especially, this technique can be applied for the measurement of the mixing ratio of air/fuel before the ignition and the flame structure after the ignition inside the Engine.

  • PDF

Temperature distribution analysis of steel box-girder based on long-term monitoring data

  • Wang, Hao;Zhu, Qingxin;Zou, Zhongqin;Xing, Chenxi;Feng, Dongming;Tao, Tianyou
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.593-604
    • /
    • 2020
  • Temperature may have more significant influences on structural responses than operational loads or structural damage. Therefore, a comprehensive understanding of temperature distributions has great significance for proper design and maintenance of bridges. In this study, the temperature distribution of the steel box girder is systematically investigated based on the structural health monitoring system (SHMS) of the Sutong Cable-stayed Bridge. Specifically, the characteristics of the temperature and temperature difference between different measurement points are studied based on field temperature measurements. Accordingly, the probability density distributions of the temperature and temperature difference are calculated statistically, which are further described by the general formulas. The results indicate that: (1) the temperature and temperature difference exhibit distinct seasonal characteristics and strong periodicity, and the temperature and temperature difference among different measurement points are strongly correlated, respectively; (2) the probability density of the temperature difference distribution presents strong non-Gaussian characteristics; (3) the probability density function of temperature can be described by the weighted sum of four Normal distributions. Meanwhile, the temperature difference can be described by the weighted sum of Weibull distribution and Normal distribution.

반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향 (Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects)

  • 안준;정인성;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

FCEV 충전 시스템 체크밸브의 수소 유입 극한 온도 조건에 따른 유동 성능 인자 분석 (Analysis of Flow Performance Factors According to Extreme Temperature Conditions of Hydrogen Inflow of FCEV Charging System Check Valve)

  • 오승훈;서현규
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.514-525
    • /
    • 2023
  • This study conducted numerical simulations with the purpose of analyzing the impact of variations in outlet pressure conditions under extreme temperature conditions on the fluid dynamics and performance of a check valve utilized in hydrogen refueling systems. Under the extreme temperature conditions, changes in outlet pressure conditions of the check valve were investigated to analyze velocity distributions, pressure distributions, and temperature distributions in the operational and connection regions. The analysis results indicated that changes in outlet pressure had a significant influence on the internal temperature variation of the check valve. Furthermore, due to density variations in the connection region caused by the cooling effect of excessively cooled hydrogen, a bias in the primary flow direction towards the lower part of the valve outlet was observed in the outlet area. Through a comparison of the results of the valve's inherent flow performance, represented by the flow coefficient, it was observed that when the pressure difference between the inlet and outlet was below 0.37 MPa, sufficient flow was not ensured.