• Title/Summary/Keyword: temperature defect scale

Search Result 25, Processing Time 0.021 seconds

The Effect of Oxide Layer Thickness to the Scale Defects Generation during Hot finish Rolling (열연사상 압연시 스케일 결함발생에 미치는 산화피막 두께의 영향)

  • 민경준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.412-422
    • /
    • 1999
  • Scale defects generated on the strip surface in a tandem finishing mill line are collected from the strip trapped among the production mills by freezing the growing scale on the strip by the melt glass coating and shutting down the line simultaneously. The samples observed of its cross sectional figure showed the process of scale defect formation where the defects are formed at the base metal surface by thicker oxidized scale during each rolling passes. The properties of the oxidized layer growth both at rolling and inter-rolling are detected down sized rolling test simulating carefully the rolling condition of the production line. The thickness of the oxidized layer at each rolling pass are simulated numerically. The critical scale thickness to avoid the defect formation is determined through the expression of mutual relation between oxidized layer thickness and the lanks of the strip called quality for the scale defects. The scale growth of scale less than the critical thickness and also to keep the bulk temperature tuning the water flow rate and cooling time appropriately. Two units of Inerstand Cooler are designed and settled among the first three stands in the production line. Two units of scale defect is counted from the recoiled strip and the results showed distinct decrease of the defects comparing to the conventionaly rolled products.

  • PDF

Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests (실배관 파열실험을 통한 국부감육 곡관 손상압력 평가)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

Experimental study of turbulent thermal convection between two flat plates (실험적 방법에 의한 두 평판 사이의 난류 열대류의 해석)

  • 윤효철;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1138-1149
    • /
    • 1988
  • Experiments have been conducted to investigate mean thermal structure in unstable turbulent thermal convection between two horizontal flat plates. The upper plate was kept at a constant cold temperature and the bottom plate at a constant hot temperature. Both air and water were used as its working fluids. Chamber aspect ratios were 3.80 and 6.17, the mean temperature differences between two plates were 2.6-9.3.deg. C, whose Rayleigh numbers in a range 6.13*10$^{5}$ -1, 07*10$^{8}$ . The heat transfer correlations obtained through the experiments are Nu=0.139R $a^{0.285}$ for air and Nu=0.087 R $a^{0.319}$ for water. Profiles of the mean temperature gradient clearly show the -2 and 1 4/3 power law regions.

Surface Defect Inspection System for Hot Slabs (열간 슬라브 표면결함 탐상 시스템)

  • Yun, Jong Pil;Jung, Daewoong;Park, Changhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.627-632
    • /
    • 2016
  • In this paper, we propose a new vision-based defect inspection system for the surface of hot slabs. To minimize the influence of self-emission from slab surfaces with high temperature, an optic method based on blue LED light and a blue pass filter is proposed. Because the slab surface is partially covered with scales, which are unavoidable oxidized substances caused during manufacturing, it is difficult to distinguish between vertical cracks and scale. In order to resolve this problem and to improve the detection performance, the use of a Gabor filter and dynamic programming are proposed. Finally, the effectiveness of the proposed method is shown by means of experiments conducted on images of hot slabs that were obtained from an actual slab production line.

Comparison of numerical simulation and experiment for the OiSF-Ring diameter in czochralski-grown silicon crystal

  • Oh, Hyun-Jung;Wang, Jong-Hoe;Yoo, Hak-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.356-361
    • /
    • 2000
  • The radial position of OiSF-ring has been meaningful data in industry. Thus it's position was calculated by application of (V/G)/sub crit/ = 0.138 ㎟/minK and point defect dynamics for industrial scale grower with various pull rates. After the calculation, compared with experimental result. OiSF-ring diameters expected with calculation were good agreement with experimental results. In order to show validity of the predicted temperature distribution using STHAMAS which is one of the global simulator for Cz crystal growing, temperature was measured along the axis of crystal using thermocouples, and compared with the calculated temperature. We found the effective thermal conductivity K/sub m/ (r) which gives in accordance with the temperature distribution at the axis of crystal and crystal/melt interface shape between experimental and computational results. Therefore, effective thermal conductivity K/sub m/ (r) was applied instead of solving melt convection problem.

  • PDF

Effect of Critical Cooling Rate for Minimization of Porosity in the Thick Aluminum Casting (후육 Al 주조재의 기포결함 최소화를 위한 임계냉각속도의 영향)

  • Kwak, Si-Young;Cho, In-Sung;Kim, Yong-Hyun;Lee, Hee-Kwon
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.181-185
    • /
    • 2017
  • In the present study, the effect of cooling rate on the formation of the porosity in the thick aluminum sand casting was investigated. Nowadays, due to considerations of weight and cost reduction, large scale thick aluminum casting has replaces steel frames for vacuum chambers for semiconductor production. Several thick aluminum castings were manufactured using chill with temperature measurements. The castings were inspected using 3D computed tomography in order to quantify the porosity defect density in the castings. Effects of the thickness of the chill on the porosity defect density were discussed.

Effect of Metal Oxide of Ceramic Superconductor for Neutron beam Irradiation (중성자 조사용 전기도체의 첨가물 효과)

  • Lee, Sang-Heon;Choi, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.429-432
    • /
    • 2008
  • Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of superconducting materials at liquid nitrogen temperature. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pinning center inside the superconductor. In this paper, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of superconductor.

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Hot Forging Design for a Large Scale Compressor Wheel (대형 압축기 휠의 열간단조 공정설계)

  • 임정숙;염종택;김현규;박노광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray (초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구)

  • Lee, J.C.;Ahn, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF