• Title/Summary/Keyword: temperature correction

Search Result 480, Processing Time 0.023 seconds

Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer (개량된 등가비열법을 이용한 상변화 열전달의 수치해석)

  • Mok Jinho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.

Strength Correction Factors due to Temperature Drop of Structural Concrete under Low Temperature by the Equivalent Age Method (저온환경에서 타설되는 구조체 콘크리트의 등가재령 방법을 활용한 기온보정강도 설정)

  • Choi, Youn-Hoo;Han, Min-Cheol;Lee, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.409-416
    • /
    • 2020
  • In this paper, strength correction factors of the concretes incorporating ordinary Portland cement(OPC), fly ash(FA) and blast furnace slag(BS) with 50% of water to binder ratio due to temperature drop for standard room temperature(20±3℃) are provided. For this, strength development was done based on equivalent age method. For calculating the equivalent age, apparent activation energy was obtained with 24.69 kJ/mol in OPC, 46.59 kJ/mol in FA, 54.59 kJ/ol in BS systems. According to the estimation of strength development of the concretes, the use of FA and BS resulted in larger strength drop than that of OPC under low temperature compared to standard room temperature. Hence, strength correction factors(Tn) for OPC, FA and BS are suggested within 4~17℃ with every 3MPa levels.

Car transmission shaft distortion correction system based on adaptive PID controller using displacement sensors (변위센서를 이용한 적응적 PID제어기반 자동차 변속기 샤프트 교정시스템)

  • Choi, Sang-Bok;Ban, Sang-Woo;Kim, Ki-Taeg
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.375-384
    • /
    • 2010
  • In this paper, we proposed a new shaft distortion correction system having an adaptive PID controller using displacement sensors, which is adaptively reflecting variations of shaft strength owing to irregular heat treatment during an annealing process and sensitivity to the seasonal temperature changes. Generally, the shafts are annealed by heat treatment in order to enlarge the strength of the shaft, which causes an distortion of a shaft such as irregular bending of the shaft. In order to correct such a distortion of the shaft, a mechanical pressure is properly impacted to the distorted shaft. However, the strength of every shaft is different from each other owing to irregular annealing and seasonal temperature changes. Especially, the strength of a thin shaft such as a car transmission shaft is much more sensitive than that of a thick shaft. Therefore, it is very important for considering the strength of each shaft during correction of the car transmission shaft distortion in order to generate proper mechanical pressure. The conventional PID controller for the shaft distortion correction system does not consider each different strength of each shaft, which causes low productivity. Therefore, we proposed a new PID controller considering variations of shaft strength caused by seasonal temperature changes as well as irregular heat treatment and different cooling time. Three displacement sensors are used to measure a degree of distortion of the shaft at three different location. The proposed PID controller generates adaptively different coefficients according to different strength of each shaft using appropriately obtained pressure times from long-term experiments. Consequently, the proposed shaft distortion correction system increases the productivity about 30 % more than the conventional correction system in the real factory.

Determination of the Strength Correction with the Temperature Level in Each Region of Korea (우리나라 각 지역의 단계별 기온보정강도 적용기간 설정)

  • Baek, Dae-Hyun;Kim, Sung-Il;Kim, Jung-Jin;Lee, Gun-Cheol;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.19-23
    • /
    • 2007
  • In this paper, the period for the strength correction was determined with each region of south Korea based on the meteorological data of KMA(Korea meteorological administration) by applying KASS-5 regulation. In case of 28 days of strength control age, the period for strength correction with 6MPa was calculated to 50-60 days and, with 3 MPa. to around 80 days. The period for the strength correction was shown to be decreased with the rise of altitude. The period to consider the delay of the strength development due to low temperature including the period of cold weather concrete was nearly 7 months around 1 year. References for determining the strength correction factors with each region of south Korea was provided in this paper.

  • PDF

Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain (고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석)

  • 송하철;류현수;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.

Study to evaluate the correlation between structural core strength and strength development of standard cured specimens in a summer environment (하절기 환경에서 구조체 코어 강도와 표준양생 공시체 강도의 압축강도 발현 상관성 평가 연구)

  • Jeong, Min-Gu;Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.143-144
    • /
    • 2023
  • The compressive strength of concrete varies depending on various factors. Among them, based on the curing temperature, the KCS 14 20 10 Standard Specification for General Concrete calculates the nominal strength by applying the temperature correction value (Tn) based on the compressive strength of the standard cured concrete at 20±2℃ when designing the formulation strength. However, Tn is a correction value that considers only the temperature, and the correction of strength difference due to heat of hydration is not applied. Therefore, in this study, one-component and two-component concrete are mixed in the summer, structural concrete are manufactured, standard concrete specimen are manufactured, and coring is performed on the central and boundary parts of the structural concrete to calculate the correction value applied to the nominal strength by comparing the compressive strength of standard cured concrete on the 28th day of curing and the compressive strength of structural concrete on the 91st day of curing.

  • PDF

Distortion Correction of Surface Temperature Measurement Using an Infrared Camera (적외선 카메라를 이용한 표면온도측정의 왜곡 보정)

  • Lee, Sungmin;Kim, Ikhyun;Lee, Jong Kook;Byun, Yunghwan;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.545-551
    • /
    • 2016
  • Surface temperature of supersonic wind tunnel model was measured using an infrared thermography technique. To measure the temperature quantitatively, various calibration techniques such as blackbody calibration which converts detected camera signal to temperature, distortion correction due to the camera lens and an imbalance of camera pose, and emissivity calibration which considers viewing angles to the model surface, were employed. Throughout the study, for the quantitative as well as qualitative surface temperature measurement, it was verified that the distortion correction must be considered even for the use of two-dimensional model in aerodynamics testing.

Correction Coeffecient for Tensile Adhesive Strength of the Bridge Decks Waterproofing Systems with Different Temperature Conditions (온도조건에 따른 교면방수재의 인장접착강도 보정계수에 관한 실험적 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.794-797
    • /
    • 2004
  • In this study, tensile adhesive strength(TAS) test was carreid out for evaluated the effects of temperature conditions (-20, -10, 0, 5, 10, 20, 30, $40^{\circ}C$) on the tensile adhesive characteristics about 4 type waterproofing membranes which were commercially used in bridge decks. And, failure appeariences of waterproofing systems in each temperature after TAS test were observed the sawing surfaces of waterproofing systems for whether or not damaged of waterproofing membranes. Also, correction coefficient of TAS with temperature were calculated using 4 type waterproofing membrane. It could be shown that the higher TAS and shear adhesive strength, the lower temperature, regardless of the type of waterproofing membrane. Temperature sensibility of TAS was especially remarkable in epoxy membrane. Failure type was occurred the ductile failure in $30^{\circ}C\;and\;40^{\circ}C$. From these results, it was shown that if ambient temperature above $30^{\circ}C$ maintains for a long time, waterproofing membrane will be deformed by softening. Otherwise, waterproofing membrane in temperature below $20^{\circ}C$ shown that occurred the brittle failure. From the results of visual observation of cutting surface for specimen, the thin waterproofing membranes shown indented by hot aggregate of the asphalt mixtures. Therefore, it could be known that the specification of waterproofing membrane thickness is necessary by waterproofing membrane type. As temperature change varied with pavement depth, the interface temperature was more important than ambient temperature in TAS test. Now, TAS test results were limited only in $-10^{\circ}C\;and\;20^{\circ}C$ temperature, but correction coefficient of TAS by ambient temperature could be used as a solution to deal with this problem.

  • PDF

Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission (자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발)

  • 임원식;이진원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.