To use the earth heat for the livestock housing, an underground heat exchanger is developed and pipes are layed in the depth of 2.5m under the ground. The pipes have two different kinds of diameter (200mm, 100mm) and materials (PE, PVC). The results of heating effect in winter and spring are following. The temperature in different soil depth varies from 5$^{\circ}C$ by 1.5m depth, to 9$^{\circ}C$ by 3.5m. So it should be better to have the depth greater than 2.5m. The difference of air temperature between the inside and outside pipe was 9.9 Kelvin(K) with 200mm diameter and 13.4K with the 100mm diameter with the same material in winter. By the lower outside temperature from -7.2$^{\circ}C$, it could keep the air temperature above 6$^{\circ}C$ through the 100mm diameter pipe. The heating performance was 593 W with 200mm diameter, 118W with 100mm diameter (PE), and 115W with 100m diameter (PVC), respectively. As the outside temperature varies from -1.5$^{\circ}C$ to 18.6$^{\circ}C$ in early spring, the air temperature through the pipes show 4∼8$^{\circ}C$. While the difference between maximum and minimum outside temperature is 14K, the one through the pipes could be reduced by 2K. Pipes with small diameter can more reduce the difference than the pipe with larger diameter.
The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.
Hydrodynamic characteristic of surfactant drag-reducing flows is still not fully understood. This work investigated the temperature and diameter effect on hydrodynamic characteristic of cationic surfactant drag reducing flows in pipes. Solution of oleyl bishydroxyethyl methyl ammonium chloride (Ethoquad O/12), 900 ppm, as a cationic surfactant and sodium salicylate (NaSal), 540 ppm, as a counter-ion was tested at 12, 25, 40, and $50^{\circ}C$ in pipes with diameter of 13, 25, and 40 mm. Drag reduction effectiveness of this surfactant solution was evaluated in 25 mm pipe from 6 to $75^{\circ}C$. Rheological characteristic of this solution was measured by stress control type rheometer with cone-and-plate geometry. Scale-up laws proposed by previous investigators were used to evaluate the flow characteristic of the solution. It was found that this surfactant solution has clear DR capability until $70^{\circ}C$. Result of this work suggested that temperature has a significant influence in changing the hydrodynamic entrance length of surfactant drag reducing flows. From rheological measurement, it was found that the solution exhibits Shear Induced Structure at all temperatures with different degree of peak viscosity and critical shear rate.
All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.13
no.8
/
pp.667-673
/
2001
As an alternative cooling method to reduce environmental hazard, vortex tubes have been studied for energy separation into cold and hot streams. Hence, the experiments were carried out systematically to find the best ratio of vortex chamber diameter to tube diameter. Also, the work was don to investigate how inlet pressure and geometric ratios of vortex tube affected temperature differences at tow needs as ell as cooling capacity and cooling efficiency. The result showed that the maximum temperature differences at the both ends and the maximum cooling efficiency were obtained when the ratio of vortex chamber diameter was about 1.45, while the inlet pressure ws not higher than 0.7 MPa.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.8
no.3
/
pp.330-337
/
1996
The effects of pump and temperature on drag reducing characteristics were investigated with a polymer(PAAM : Polyacrylamide) and three kinds of surfactants(CTAC, STAC, Habon-G) in fully developed turbulent pipe flows with various experimental parameters such as additive concentration(30~500ppm), pipe diameter(4.65mm, 10.85mm), Reynolds number($4{\times}10^4{\sim}10^5$) and working fluid temperature($20{\sim}80^{\circ}C$). The pump effect on PAAM was severe such that the drag reduction rates obtained with pump were decreased upto 30% as compared with those obtained with compressed air in 4.65mm test section. The temperature effect on PAAM was noticeably considerable, that is, the higher temperaute, the less drag reduction rate. On the other hand, no significant pump effect on the surfactants was observed. The drag reducing effectiveness of CTAC was totally lost in the temperature ragne of 60 to $80^{\circ}C$, whereas STAC and Habon-G kept their distinct drag reducing capability at a temperature of $80^{\circ}C$. This study clearly elucidated that for DHC application of drag reducing additives, the pump and temperature effects as well as additive concentration and pipe diameter should be carefully taken into consideration.
Proceedings of the Korean Institute of Building Construction Conference
/
2013.05a
/
pp.113-114
/
2013
This study is to investigate the effect of the diameter of reinforcement bars located in an aluminum-form on the temperature histories of the re-bars before placing concrete during a cold weather condition. The diameters of reinforcement bars with 13 mm, 19 mm, 25 mm and 32 mm were prepared for the experimental tests. Results showed that the larger the size of the diameter of the bars, the higher were the temperature drop. However, this study found that its effect on the temperature drop of the bars was insignificant.
In this study, the emulsion dispersion stability of optimizing storage temperature was investigated. The system was based on oil/water (O/W) emulsions. In order to evaluate the stability, mean diameter of droplet was measured as a function of temperature with various mixed hydrophilic lipophilic balance (HLB). In addition, the correlations between phase inversion temperature (PIT) and the optimum storage temperature were probed. In this system, majority of the smallest droplet was shown at temperature of $20^{\circ}C$ below PIT. Whether the temperature was increased or decreased from the optimum, size of the droplet increased. According to the mixed HLB, the particle size and optimum storage temperature were also affected. As the concentrations of surfactant were increased, the size of particle decreased with lower optimum temperature for storage. If the surfactant (4 wt%) were mixed with HLB, the optimum storage temperature was $21^{\circ}C$ for maintaining the size of smallest droplet at 108.3 nm in diameter. At above optimum condition, increased size of particle was observed approximately 4 % increases from 108.2 nm to 112.3 nm after 600 hours. The size of particle in emulsion was maintained stably without any considerable effect of Ostwald ripening phenomena at the optimum storage temperature with low polydispersity index.
Transactions of the Korean Society of Mechanical Engineers B
/
v.24
no.4
/
pp.519-525
/
2000
The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.
SiC nanorods have been grown on Si (100) substrate directly. Tetramethylsilane and Ni were used for SiC nanorod growth. After 3minute, SiC nanorod had grown by CVD. Growth regions ware divided by two regions with diameter. The First region consisted of thin SiC nanorods having below 10 nm diameter, but second region's diameter was 10∼50 nm. This appearance shows by reduction of growth rate. The effect of temperature and growth time was investigated by scanning electron microscopy. Growth temperature and time affected nanorod's diameter and morphology. With increasing growth time, nanorod's diameter increased because of the deactivation effect. But growth temperatures affected little. By TEM characterization, grown SiC nanorods consisted of the polycrystalline grain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.