• Title/Summary/Keyword: telescoping work

Search Result 3, Processing Time 0.018 seconds

A Study on the Safety Risk of Telescoping Work of Tower Cranes (타워크레인 텔레스코핑 작업의 안전리스크 대응방안 연구)

  • Lee, Dong-Hoon;Choi, Jae-Hwi;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.9-13
    • /
    • 2009
  • As recent construction projects are bigger and higher, the importance of lifting is increasing. In construction sites tower cranes are an essential lifting equipment covering were than 50% of all construction activities. But due to neglect of safety supervision, tower crane-related accidents are frequently taking place. Since most of construction activities is done in heights, the accidents are more likely to be catastrophic. According to an analysis of the causes of tower crane-related accidents, 49% of all accidents claimed for certain periods($1999{\sim}2003$) occurred in the process of telescoping work. Therefore, this research is conducted with the object of analyzing telescoping work of tower cranes and presenting solutions against safety risk. It is expected that the results of this study can be used as useful basic data or material when preparing for effective safety management for tower cranes.

  • PDF

Analysis of Conceptual Models and State-of-the-Art Technologies for the Automation of Telescoping Work in Horizontal Tower Cranes (수평형 타워크레인 텔레스코핑 작업의 자동화를 위한 개념 모델 및 요소기술 분석)

  • Lee, Sang-Ho;Kim, Young-Suk;Lee, Jeong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.705-717
    • /
    • 2011
  • The number of horizontal tower cranes, major hoisting machineries for lifting approximately 50% of entire materials in construction projects, is rapidly increasing, but a number of accidents related to the tower cranes are being continuously occurred in construction sites as well. In particular, telescoping works in the horizontal tower cranes have showed the greatest safety concerns such as falls and collapses. It is due to the fact that tasks inserting a new mast in the space made after raising telescoping cage by fluid pressure and ascending it to the required height in the telescoping works include a series of dangerous factors in safety aspects, and might cause very serious and unexpected accidents in construction sites. The primary objective of this research is to propose two conceptual models for automating the telescoping work in horizontal tower crane and conduct their technical feasibility analyses. In this study, a design concept, a position control system using hydraulic cylinders is suggested as a better alternative for automating the telescoping work. Its potential safety improvement rate compared to the conventional method is also analyzed and presented in this study.

A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load (타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구)

  • Jung, Sung-Lyoung;Lee, Do-Geun;Paik, Shinwon;Shin, Sang-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.