• Title/Summary/Keyword: telescope

Search Result 1,548, Processing Time 0.029 seconds

An Analysis of Near-infrared Light Curves of δ Scuti Variable BO Lyn (δ Scuti형 변광성 BO Lyn의 근적외선 광도곡선 분석)

  • Lim, Ji-Hye;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.389-397
    • /
    • 2016
  • In order to investigate the light curve difference in visual and infrared wavelength of ${\delta}$ Scuti variable Bo Lyn, observations were performed using BOAO 1.8m reflecting telescope and an infrared detector, KASINICS, with J, H, and Ks filters. Infrared light curves of total 7 nights were obtained between March and April in 2011, and those were compared to the V-filter light curve to examine the differences in period, time of maximum light, amplitude, and shape. From the periodic analysis of infrared light curve, a single frequency of $f_1=10.712cycle/day$, $P=0.09335{\pm}0.00002days$ was obtained, and there was no difference in the period along different wavelengths. In the infrared light curve, a frequency of $2f_1$ was detected. This frequency well explains the asymmetric shape of light curve, one of the characteristics of high-amplitude ${\delta}$ Scuti variables. We compared the locations of the measured infrared maxima and the predicted maxima of V-filter, finding that the times of maxima were delayed about 0.3 phase at infrared wavelengths. Amplitude ratios were adopted to be ${\Delta}J/{\Delta}V=0.328$, ${\Delta}H/{\Delta}V=0.216$, and ${\Delta}Ks/{\Delta}V=0.211$, with the range of variation being smaller at longer wavelengths. It seems that the differences in the times of maxima and amplitude occurred because the changes in brightness of a pulsating variable star are mainly caused by the change in temperature.

UBVRI CCD PHOTOMETRY OF THE TYPE Ic SUPERNOVA SN 1994I IN M51: THE FIRST TWO MONTHS

  • LEE MYUNG GYOON;KIM EUNHYEUK;KIM SANG CHUL;KIM SEUNG LEE;PARK WON KEE;PYO TAE SOO
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.31-43
    • /
    • 1995
  • We present UBVRI CCD photometry of the Type Ie supernova SN 19941 in M51 which was discovered on April 2, 1994 (UT). UBVRI CCD photometry of SN 1994 I were obtained for the period of the first two months from April 4, 1994, using the Seoul National University Observatory 60 cm telescope. The light curves of SN 19941 show several interesting features: (a) SN 19941 reaches the maximum brightness at B-band on April 8.23 (B = 13.68 mag), at V-band on April 9.10 (V = 12.89 mag), and at I-band on April 10.32 (I = 12.48 mag); (b) The light curves around the maximum brightness are much narrower than those of other types of supernovae; (c) The light curves after the peak decline more steeply than those of other types of supernovae; and (d) The colors get redder from $(V-R){\approx}0.2 mag ((V - I){\approx} 0.3 mag, (B - V){\approx}0.7 mag)$ on April 4 to $(V-R){\approx}0.6 mag ((V-1){\approx}0.9 mag, (B-V){\approx}1.3 mag)$ on April 18. Afterwards (V - R) colors get bluer slightly $(by\~0.005 mag/day)$, while (V-I) colors stay almost constant around $(V-1){\approx}1.0 mag$. The color at the maximum brightness is (B-V)=0.9 mag, which is $\~1$mag redder than the mean color of typical Type la supernovae at the maximum brightness. The light curves of SN 1994I are similar to those of the Type Ie supernova SN 1962L in NGC 1073. Adopting the distance modulus of $(m-M)_0 = 29.2 mag$ and the reddening of E(B - V) = 0.45 mag [Iwamoto et al. 1994, preprint for ApJ], we derive absolute magnitudes at the maximum brightness of SN 1994I, Mv(max) = -17.7 mag and MB(max) = -17.4 mag. This result shows that SN 1994I was $\~2$mag fainter at the maximum brightness compared with typical Type Ia supernovae. A narrower peak and faster decline after the maximum in the light curve of SN 1994I compared with other types of supernovae indicate that the progenitor of SN 1994I might be a lower mass star compared with those of other types of supernovae.

  • PDF

Infrared Medium-Deep Survey: Overview

  • Im, Myungshin;Pak, Soojong;Park, Won-Kee;Kim, Ji Hoon;Kim, Jae-Woo;Lee, Seong-Kook J.;Karouzos, Marios;Jeon, Yiseul;Choi, Changsu;Jun, Hyunsung;Kim, Dohyeong;Hong, Jueun;Kim, Duho;Hyun, Minhee;Yoon, Yongmin;Taak, Yoon Chan;Kim, Yongjung;Baek, Giseon;Jeong, Hyeonju;Lim, Juhee;Kim, Eunbin;Choi, Nahyun;Lee, Hye-In;Bae, K.M.;Chang, Seunghyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.68.1-68.1
    • /
    • 2013
  • Infrared Medium-Deep Survey is a near-infrared imaging survey geared toward understanding the formation and the evolution of quasars and galaxies at high redshift, and studying transient and time-variable objects such as gamma-ray bursts, supernovae, and young stellar objects. The survey uses a multi-tier structure, with deep imaging survey of 100 $deg^2$ using UKIRT to the depth of 23 AB mag, and a shallower imaging of interesting sources using the CQUEAN camera on the 2.1m telescope at McDonald observatory. This talk will give an overview of the survey strategy, the instrument development, and science highlights. The science highlights will include the discovery of high redshift quasars, high redshift galaxy clusters, GRBs, and other interesting sources. At the end of the talk, we will also present the future prospects of our study.

  • PDF

TIME-SERIES PHOTOMETRY OF VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 288

  • Lee, Dong-Joo;Koo, Jae-Rim;Hong, Kyeongsoo;Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Jeon, Young-Beom;Kim, Yun-Hak;Lim, Beomdu;Ryu, Yoon-Hyun;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Park, Byeong-Gon;Kim, Chun-Hwey
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, ${\langle}M_V{\rangle}=-2.476({\pm}0.300){\log}P-0.354({\pm}0.385)$, from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; $P_{FO}/P_F=0.779$ for V5, $P_{TO}/P_{FO}=0.685$ for V9, $P_{SO}/P_{FO}=0.811$ for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

A Design of Gaussian Beam Guiding System for Cassegrain Antennas (카세그레인 안테나용 가우시안 빔 가이딩 시스템 설계)

  • Han, Seog-Tae;Lee, Jeong-Won;Kang, Jiman;Chung, Moon-Hee;Je, Do-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.851-868
    • /
    • 2015
  • A radio telescope which has been dominantly used for millimeter and submillimeter wave radio astronomy is a cassegrain antenna. A various receivers with specified observing bandwidths are installed on cassegrain antenna so as to carry out to investigate a diverse radio astronomy. A beam guiding system should be required so that a various receiver can be conducted their own observational frequency bands. The beam guiding system based on Gaussian beam transmission theory consists of quasi-optical circuit used such ellipsoidal mirror, dielectric lens and feed horn. In this paper, not only Gaussian beam transformations based on Gaussian beam theory are presented, but also design techniques for quasi-optical circuit are given. By using proposed design techniques, both Gaussian beam quasi-optical circuits to be used for cassegrain antenna and design results are also described. Properties of key focusing elements such ellipsoidal mirror and dielectric lens and feed horn are also discussed. It is expected that beam guiding system to be applied cassegrain antenna could be easily designed by using proposed design techniques.

Demand Surveys for Big Research Facilities and Equipments to Advance National S&T Research Infrastructure (과학기술 하부구조 선진화를 위한 대형 연구장비의 수요 조사)

  • 권용수;민철구
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.12a
    • /
    • pp.159-176
    • /
    • 1997
  • This paper deals with demand surveys for big science and technology research facilities and equipments to advance national S'||'&'||'T research infrastructure. We perform surveys thrice based on applied Delphi method on the future demand of big S'||'&'||'T research facilities and equipments among Korean scientists and engineers. We employ the concept of big S'||'&'||'T research facilities and equipments as follows: \circled1 The operating size of it is equivalent to that of an institute or research center, and/or \circled2 The users in various disciplines are many, and/or \circled3 The application areas or spill-over effects are large, and/or \circled4 The scale and scope of research objects is equivalent to that of mega science area such as earth.oceanography.space, and/or \circled5 The expenses for installing and operating it are to be supported by government, and/or \circled5 The facilities are expected as necessary for international joint research, and/or \circled7 It is necessary for promoting creative basic science and developing creative technology. We ask the respondents to answer the following questionnaire: - How to prioritize the equipments according to the degree of importance\ulcorner $\square$ Promotion of basic science and mega science, the development of the technologies to enhance the public welfare, the competitiveness of industrial technologies, the job creation for the S'||'&'||'T personnel, and international cooperation. - Who should be in charge of acquisition and operation of the equipments\ulcorner $\square$ Industry, Government Research Institutes, Academy, ERC and SRC. - When shall we acquire the equipment\ulcorner $\square$ Within 2000, 2002, 2007, 2012, and 2017. - How shall we acquire the equipments\ulcorner $\square$ International Joint Development, Domestic Development, Acquisition from Overseas, - How much will the equipment generate spill-over effects to national competitiveness\ulcorner $\square$ Promotion of basic science, contribution to the economy, supply of S'||'&'||'T personnel, and international cooperation. We suggest the following equipments as prioritized candidates after consulting the officers from MOST, MOE, MIC, MOEN and experts from KBSI and STEPI:(table omitted) where, #1, Korea Advanced Liquid Metal Reactor, #2. 800 MHz Superconduction Fourier-Transform Nuclear Magnetic Resonance Spectrometer, #3. Ion Accelerator, #4. Seismic Test Facility, #5. Transonic Wind Tunnel, #6. Radio Telescope for Very Long Baseline Interferometer, #7. 3000t Universal(or Large Structure) Testing Machine, #8. Compost Facility or Plasma Pyrolysis Facility.

  • PDF

PHOTOMETRIC STUDIES OF THE CONTACT BINARY BV DRACONIS (접촉쌍성 BV Draconis의 측광학적 연구)

  • 이재우;한원용;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.227-240
    • /
    • 1999
  • We performed CCD photometric observations of W UMa type contact binary BV Dra during eight nights from May 1996 to June 1999 using 61cm telescope at Sobaeksan Optical Astronomy Observatory, and completed BV R light curves of the system. From our observations, we derived nine new times of minimum lights (five timings for primary eclipse, four for secondary) and determined new light elements with the times of minima observed since 1999. Our BV R light curves and Batten & Lu(1986)'s radial-velocity ones were simultaneously analyzed with contact mode (Mode 3) of Wilson-Devinney's binary model, and the photometric and spectroscopic solutions for BV Dra were solved. In the analysis, we derived the solutions of 1999 light curves with and without spots, respectively. As the results, asymmetry of light curves may be interpreted as produced by the existence of two spots; hot spot on the secondary and cool on the primary. Combining solutions of light curves and radial-velocity ones, absolute dimensions of BV Dra are $M_1=0.40M_{odot}$, $M_2=1.01M_{odot}$, $R_1=0.72R_{odot}$, $R_2=0.40R_{odot}$. In mass-radius diagram, the less massive and hotter primary component of BV Dra is near TAMS and the secondary is near ZAMS, which is very similar to the other W-type W UMa binaries.

  • PDF

SPIN PERIODS ESTIMATION OF GEOSTATIONARY SPIN-STABILIZED SATELLITES (정지궤도 회전안정화 위성의 자전주기 추정)

  • 이동규;김상준;박준성;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • Optical observations of Geostationary and Molynia orbit spin-stabilized satellites over the Korean peninsula have been carried out at the Kyung Hee University Observatory with a 30 inch telescope. We have observed 5 spin-stabilized satellites, and obtained 0spin periods, which can be used for deducing a design for each bus model. Verifications of spin periods of 3 known satellites from manufacturer, and observations of 2 unknown satellites were made. The difference between known spin periods and observed spin periods is 0.06sec on the average and the difference of those spin rates is 3.3rpm on the average. Those results indicate that spin periods and spin rates of observed geostationary spin-stabilized satellites are within operating limits. Spin rates of unknown satellites, Fengyun 2B and Molynia 1-87 are 89.3rpm, 78.4rpm earh. It is suggested that the research of spin stabilized satellites can be used for the determinations of standard light sources for short period celestial objects and helpful for the constructions of satellite databases with photometric and/or spectroscopic satellite observations.

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

Development of High Energy Particle Detector for the Study of Space Radiation Storm

  • Jo, Gyeong-Bok;Sohn, Jongdae;Choi, Cheong Rim;Yi, Yu;Min, Kyoung-Wook;Kang, Suk-Bin;Na, Go Woon;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2014
  • Next Generation Small Satellite-1 (NEXTSat-1) is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS) is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD) is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of $33.4^{\circ}$ was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.