• Title/Summary/Keyword: tectonic movements

Search Result 42, Processing Time 0.022 seconds

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Movement of the Yangsan Fault and Tectonic History around the Korean Peninsula (양산단층의 구조운동과 한반도 주변 지구조사)

  • 장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.228-234
    • /
    • 1998
  • To interpret the relationship between movement of the Yangsan fault and tectonics around the Korean peninsula, the six sequential paleostresses were reconstructed from 1, 033 striated small faults which were measured at 37 outcrops along the strike of the Yangsan fault. And, the relationship between these paleostresses of the Yangsan fault and the tectonic events around the Korean peninsula were compared. As compared with the tectonic history around the Korean peninsula, the movement of the Yangsan fault is interpreted as follows; The initial feature of the Yangsan fault was formed with the development of extension fractures by the NW-SE extension. The fault experienced a right-lateral strike-slip movement continuously. The movements had been continued until the Late Miocene age, which was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events. In the last stage, the fault acted with a slight extension or right-lateral movement.

  • PDF

Fault-related Landforms and Geomorphological Processes Around Ungchon-Ungsang Areas in the Middle Part of the Dongrae Fault (동래 단층 중부 지역 웅촌-웅상 일대의 단층 지형과 지형 발달)

  • Lee, Gwang-Ryul;Park, Chung-Sun;Shin, Jae Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • This study analyzed the distribution of fluvial landforms, fault-related geomorphic features and lineaments around the area of Ungchon-Ungsang in the Dongrae Fault, and discusses the charateristics of geomorphic development based on those. As a result, the NE-SW lineaments are predominantly developed in many numbers within the study area, and the NW-SE or N-S secondary lineaments are developed induced by multiple deformation with the Yangsan Fault. Geomorphologically, the early tectonic history of the Ungchon-Ungsang basin is largely divided into three stages ; 1) the Tertiary fault activity and formation of fracture zone, 2) development of erosional basin, 3) local crustal movements and development of fault-related topography. It is assumed that alluvial fans, deflected channel and stream piracy were formed by local tectonic movements related to faultings during the Quaternary.

Tsunami Disasters and Tectonic Movements along the Coastal Areas of Northeast Japan Derived from Mega-Earthquake in March, 2011 (2011년 3월 일본 동북지방 태평양 연안 지진재해시의 쓰나미 재해와 지각변동)

  • CHOI, Seong Gil;MATSUMOTO, Hide-aki;HIRANO, Shinichi;PARK, Ji-hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • The tsunami disasters and tectonic movements derived from mega-earthquake(M 9.0) which occured in the sea floor of the Pacific side of northeast Japan in March, 2011 were investigated. Landward invasion limit of the tsunami was 4.0km from the present coastline in Sendai coastal plain. It was observed that sandy deposit was dristributed largely in coastward part and muddy deposit was distributed largely in landward part. The ratios of distribution distances of the above two deposits were, respectively, 60~75% and 25~40% of the whole invasion distance of the 2011 tsunami. The ratios of the above distribution distances of tsunami deposits could be used to estimate landward invasion distances of the past maga-tsunamies(e.g. '2,000year B.P. Mega-Tsunami' and 'Jogan Tsunami' etc.) in Sendai coastal plain. The mega-scale tsunami disasters were caused by the low and flat geomorphic condition in the Sendai coastal plain and the increasing effect of tsunami height affected by narrow inlet condition of the so-called Ria's coast in the Sanriku coastal area respectively. Tectonic subsidences caused by the mega-earthquake in march, 2011 were observed in many areas of Ishinomaki, Ogawa, Ogachi and Onagawa coasts in northeast Japan. The displacements of tectonic subsidence were between 0.5 meters and 1.0 meters.

Geotectonic Movements and Metal Ore Deposits in South Korea (남한(南韓)의 지구조운동(地構造運動)과 금속광상(金屬鑛床))

  • Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 1974
  • From the point of view of geological history, the land of South Korea is regarded as the subject of processes of the changes in formations of several geological blocks such as Kyonggi massif, Yeongnam massif, Taebaegsan basin, Kyungsang basin and so on. Through the long period of geological chronology, the present topography and geotectonics have been formed by the complicate interactions of epirogenetic movements, magmatism, orogenesis, differential vertical movements, metamorphism and sedimentation. The reason of the crust movements mentioned above, is suppossed that the Pacific and West Pacific plate have subducted directly or indirectly into the East Asia plate. This fact can be endorsed by the results of the studies on the heat flow, gravity anomaly, absolute age dating, tectonic lineation, lithofacies and the temperature of hot spring in South Korea. The formations of metal ore deposits as well as other geological processes can be determined by the mechanical control of the plates and be divided into several systematic patterns. The investigation of about 110 metal mines in South Korea shows the following results. (1) Plate boundary volcanic type is about 28% (2) Plate boundary plutonic type is about 44% (3) Intraplate sedimentary type is about 26% (4) Intraplate magmatic type is about 2%.

  • PDF

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Movement History of the Yangsan Fault based on Paleostress Analysis (고응력 분석을 통한 양산단층의 구조운동사)

  • 장천중;장태우
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.35-49
    • /
    • 1998
  • To interpret the movement historv of the Yangsan fault, the paleostresses were analyzed from about 1,000 striated small faults and 330 extension joints which were measured from 37 sites near and along the strike of the Yangsan fault from Yangsan-si, Kyeongsangnam-do to the Shinkwang-myeon, Kyeongsangbuk-do. Six sequential tectonic events have boen established as followings: (I) NW-SE extension, (Il) ENE-WSW compression and NNW-SSE extension, (III) NW-SE compression, (W) ENE-WSW extension, (V) E-W comoression and N-S extension, and (VI) NNE-SSW compression and(VI) NNE-SSWextension. The movement history of the Yangsan fault rnrning in NNE direction were inteepreted based on these six sequential stress fields. The initial feature of the Yangsan fault was formed at the first stage with the development of extension fractures by tectonic event (I) of NW-SE extension. The fault was acted continuously with a right-1ateral strike-slip movement by tectonic event( II) closely related to event( I). The movements had been continued until the Late Miocene. This age was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events (ffi) and (IV). The activity of the Yangsan fault was suspended temporarily by compression of tectonic event (V) which was perpendicular to the strike of the fault. This period might be very short and the magnitude of the tectonic was also small. In the last stage, the fault acted with slight extension or right-lateral moveenent by tectonic event (VI).

  • PDF

Theoretical Potential Calculation of Coal Seam in Various Structures (복잡(複雜)한 탄층구조(炭層構造)에서의 이논전위곡선(理論電位曲線)의 계산(計算))

  • Kim, Woong-Soo;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.27-33
    • /
    • 1981
  • Due to intense tectonic activities and volcanic movements, coal mines exploration have been conflicted with problems so far. In this paper, computer calculation was specially applied for various model structures of inclined, anticlined and synclined coal beds. Of all these structures, the gradient of equipotential curves showed great as the dip of coal beds increases. Especially at synclined structure, the concaves appeared sharply in both sides of equipotential curves as the dip of coal beds increases. By above results, interpretation of coal exploration can be done by comparing field data one another.

  • PDF