• Title/Summary/Keyword: tectonic event

Search Result 42, Processing Time 0.024 seconds

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Movement History of the Yangsan Fault based on Paleostress Analysis (고응력 분석을 통한 양산단층의 구조운동사)

  • 장천중;장태우
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.35-49
    • /
    • 1998
  • To interpret the movement historv of the Yangsan fault, the paleostresses were analyzed from about 1,000 striated small faults and 330 extension joints which were measured from 37 sites near and along the strike of the Yangsan fault from Yangsan-si, Kyeongsangnam-do to the Shinkwang-myeon, Kyeongsangbuk-do. Six sequential tectonic events have boen established as followings: (I) NW-SE extension, (Il) ENE-WSW compression and NNW-SSE extension, (III) NW-SE compression, (W) ENE-WSW extension, (V) E-W comoression and N-S extension, and (VI) NNE-SSW compression and(VI) NNE-SSWextension. The movement history of the Yangsan fault rnrning in NNE direction were inteepreted based on these six sequential stress fields. The initial feature of the Yangsan fault was formed at the first stage with the development of extension fractures by tectonic event (I) of NW-SE extension. The fault was acted continuously with a right-1ateral strike-slip movement by tectonic event( II) closely related to event( I). The movements had been continued until the Late Miocene. This age was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events (ffi) and (IV). The activity of the Yangsan fault was suspended temporarily by compression of tectonic event (V) which was perpendicular to the strike of the fault. This period might be very short and the magnitude of the tectonic was also small. In the last stage, the fault acted with slight extension or right-lateral moveenent by tectonic event (VI).

  • PDF

Quaternary Tectonic Movement on Cheju Island (제주도의 제4기 지구조운동)

  • Hwang, Jae Ha;Lee, Byung Joo;Song, Kyo Young
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.209-212
    • /
    • 1994
  • Cheju Island was formed by volcanic activity probably related to the inferred geodynamics in the early Quaternary times. Paleostress analysis, in spite of a few fault slip data collected near Sanbangsan trachyte dome (dated 0.87 Ma) represents an extentional tectonic event with the direction ENE-WSW. Joint anayses in the vicinity of Seahwa reveal three extensional tectonic events of directions NW-SE, NE-SW and ENE-WSW. Especially the extensional event with the direction ENE-WSW affected the whole Cheju area during the most recent time.

  • PDF

Enhancing LANDSAT TM to update the structural analysis of the Mirs Bay Basin, Hong Kong, China

  • Leung, K.F.;Vohora, V.K.;Chan, L.S.;Malpas, J.G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.295-297
    • /
    • 2003
  • The coastal provinces of South China have been uniquely shaped by various tectonic events. During the midlate Mesozoic tectono-thermal event, the oblique subduction of the Paleo Kula-Pacific plate beneath the Eurasian plate has created a complicated tectonic setting for the whole region. However, the mechanism of this event is not completely understood. In this paper, we discuss the advantages of using LANDSAT TM satellite imagery over a small part of the region - the Mirs Bay Basin which is largely covered by dense vegetation and where limited outcrops is seen. The use of satellite imagery complements field mapping and the result shows a prominent sinistral offset along the eastern margin of the Mirs Bay Basin, which was not previously recognized on the ground.

  • PDF

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

Geometric Analysis of Minor Faults and Paleostress Reconstruction around the Dongnae Fault (동래단층 주변 소단층의 분포 특성과 고응력장 복원)

  • 조용찬;장태우;이정모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.41-52
    • /
    • 1998
  • The Dongnae Fault in the southeastern part of the Korean Peninsular is not a single fault but a complex fault zone composed of numerous minor faults. In order to deduce the paleostress tensor evolving the Dongnae Fault, we measured 329 faults in outcrops around the fault zone and analyzed the geometries of them. Most of them are steeply dipping(>65˚) and fall into three groups striking N10E, N30E and N70E. More than one half of them show the rakes less than 30˚ Paleostress tensor analysis using the collected fault data has been conducted with the Angelier's direct inversion method and the Choi's method. As result, four different principal paleostress axes each of which subtends an independent tectonic event are found. They are; (1) NNE-SSW compression and ESE-WNW extension (Event I), (2) NNE-SSW extension (Event II), (3) ESE-WNW extension (Event III) and (4) ENE-WSW compression and NNW-SSE extension (Event IV) in chronology. Therefore, the tectonic movement around the Dongnae Fault was firstly governed by strike-slip faulting related to Event I. Afterward, normal faults were formed by Event II and Event III. Finally, the dextral strike-slip faults along the major trace of the Dongnae Fault were formed in NNE direction related to Event IV.

  • PDF

Tectonics, sedimentation, and magmatism of the Cretaceous Gyeongsang (Kyongsang) Basin, Korea: Integrated approach to defining basin history and event mineralization

  • Chang, Ryu-In;Park, Seon-Gyu;Meen, Wee-Soo;Lee, Sang-Yeol
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.27-31
    • /
    • 2003
  • During the past decade, integrated stratigraphy has been effectively applied to many sedimentary basins to analyze stratigraphic response to tectonic evolution. This application has been beneficial to hydrocarbon exploration in the basins because it provides a better understanding of temporal and spatial relationships of hydrocarbon source and reservoir rocks as a function of basin evolution. Like the maturation, migration, and trapping of hydrocarbons, ore-forming processes in hydrothermal deposits may be causally linked to particular phases of basin evolution. Consequently, applying integrated stratigraphy to mineral exploration may be a logical and helpful approach to understanding ore-forming processes and predicting their occurrence, location, and origin. (omitted)

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Source parameters of December 13, 1996 Yeongweol Earthquake (1996년 12월 13일 영월지진의 진원요소)

  • 박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.15-20
    • /
    • 1997
  • Source parameters of the December 13, 1996 Yeongweol earthquake are estimated using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows predominantly strike-slip motion with small amount of thrust component. The orientation of the fault is 180$\pm$10$^{\circ}$in strike, 50$\pm$5$^{\circ}$in dip and 150$\pm$5$^{\circ}$in rake, or 292$\pm$3$^{\circ}$in strike, 65$\pm$5$^{\circ}$in dip and 30$\pm$10$^{\circ}$ in rake. These solutions are very similar to those of earthquakes occurred at Sagju, Pohang and offshore Gunsan. The compressional axis of stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.. From the result of this study and other source mechanisms around the Korean Peninsula, we are of opinion that tectonic stress around the Korean Peninsula may be more attributed to the collision of Indian plate with the Eurasian plate than subduction of Pacific and Philippine plates.

  • PDF

Revised Geology of the Deokjeok and Soya Islands in the Central-western Korean Peninsula

  • Park, Jeong-Yeong;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.631-643
    • /
    • 2020
  • The central-western Korean Peninsula contains records of an Early Mesozoic collisional event related to the final amalgamation of the East Asian continent. Here, we present a renewed geologic map of the Deokjeok and Soya islands in the central-western Korean Peninsula and its explanatory note. Our geologic map was based on a detailed investigation of the northeastern area of both islands, which is characterized by a complex fault and shear zone system that accommodated the crustal deformation related to the Mesozoic post-collisional orogenic collapse and the subsequent structural inversion. We suggest future directions of study aiming at addressing issues regarding the deformational responses of crust to the Mesozoic tectonic transition and orogenic cycles.