• Title/Summary/Keyword: technology forecasting

Search Result 788, Processing Time 0.026 seconds

Characteristic Analysis of Kospi Index Using Deep Learning (심층학습을 이용한 한국종합주가지수의 특성분석)

  • Snag-Il Han
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.51-58
    • /
    • 2024
  • This paper examines the differences between the Korean and American stock markets using the Kospi and S&P 500 indices and discusses policy implications through them. To this end, in addition to the existing time series analysis method, a deep learning method was used to compare markets, and the comparison was made in terms of stock price forecasting ability and data generation ability. In monthly data, the difference between time series was not large, and in daily data, the difference in terms of stability was weak, and there was no significant difference in predictive power or simulation data generation. As shown in the results of this study, if there is not much difference in market price movement patterns between Korea and the United States, tax benefits for long-term stocks investment will be effective against the side effects of short selling.

Time series models for predicting the trend of voice phishing: seasonality and exogenous variables approaches (보이스피싱 발생 추이 예측을 위한 시계열 모형 연구: 계절성과 외생변수 활용)

  • Da-Yeon Kang;Seung-Yeon Lee;Eunju Hwang
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.151-160
    • /
    • 2024
  • In recent years with high interest rates and inflations, which worsen people's lives, voice phishing crimes also increase along with damage. Voice phishing that becomes more evolved by technology developments causes serious financial and mental damage to victims. This work aims to study time series models for its accurate prediction. ARIMA, SARIMA and SARIMAX models are compared. As exogenous variables, the amount of damages and the numbers of arrests and criminals are adopted. Forecasting performances are evaluated. Prediction intervals are constructed along with empirical coverages, which justify the superiority of the model. Finally, the numbers of voice phishing up to December 2024 are predicted, through which we expect the establishment of future prevention strategies for voice phishing.

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

Recent Trends in the Application of Extreme Learning Machines for Online Time Series Data (온라인 시계열 자료를 위한 익스트림 러닝머신 적용의 최근 동향)

  • YeoChang Yoon
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.15-25
    • /
    • 2023
  • Extreme learning machines (ELMs) are a major analytical method in various prediction fields. ELMs can accurately predict even if the data contains noise or is nonlinear by learning the complex patterns of time series data through optimal learning. This study presents the recent trends of machine learning models that are mainly studied as tools for analyzing online time series data, along with the application characteristics using existing algorithms. In order to efficiently learn large-scale online data that is continuously and explosively generated, it is necessary to have a learning technology that can perform well even in properties that can evolve in various ways. Therefore, this study examines a comprehensive overview of the latest machine learning models applied to big data in the field of time series prediction, discusses the general characteristics of the latest models that learn online data, which is one of the major challenges of machine learning for big data, and how efficiently they can learn and use online time series data for prediction, and proposes alternatives.

Errors in the Winter Temperature Response to ENSO over North America in Seasonal Forecast Models

  • Seon Tae Kim;Yun-Young Lee;Ji-Hyun Oh;A-Young Lim
    • Journal of Climate Change Research
    • /
    • v.34 no.20
    • /
    • pp.8257-8271
    • /
    • 2021
  • This study presents the ability of seasonal forecast models to represent the observed midlatitude teleconnection associated with El Niño-Southern Oscillation (ENSO) events over the North American region for the winter months of December, January, and February. Further, the impacts of the associated errors on regional forecast performance for winter temperatures are evaluated, with a focus on 1-month-lead-time forecasts. In most models, there exists a strong linear relationship of temperature anomalies with ENSO, and, thus, a clear anomaly sign separation between both ENSO phases persists throughout the winter, whereas linear relationships are weak in observations. This leads to a difference in the temperature forecast performance between the two ENSO phases. Forecast verification scores show that the winter-season warming events during El Niño in northern North America are more correctly forecast in the models than the cooling events during La Niña and that the winter-season cooling events during El Niño in southern North America are also more correctly forecast in the models than warming events during La Niña. One possible reason for this result is that the remote atmospheric teleconnection pattern in the models is almost linear or symmetric between the El Niño and La Niña phases. The strong linear atmospheric teleconnection appears to be associated with the models' failure in simulating the westward shift of the tropical Pacific Ocean rainfall response for the La Niña phase as compared with that for the El Niño phase, which is attributed to the warmer central tropical Pacific in the models. This study highlights that understanding how the predictive performance of climate models varies according to El Niño or La Niña phases is very important when utilizing predictive information from seasonal forecast models.

Applications of "High Definition Digital Climate Maps" in Restructuring of Korean Agriculture (한국농업의 구조조정과 전자기후도의 역할)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The use of information on natural resources is indispensable to most agricultural activities to avoid disasters, to improve input efficiency, and to increase lam income. Most information is prepared and managed at a spatial scale called the "Hydrologic Unit" (HU), which means watershed or small river basin, because virtually every environmental problem can be handled best within a single HU. South Korea consists of 840 such watersheds and, while other watershed-specific information is routinely managed by government organizations, there are none responsible for agricultural weather and climate. A joint research team of Kyung Hee University and the Agriculture, forestry and Fisheries Information Service has begun a 4-year project funded by the Ministry of Agriculture and forestry to establish a watershed-specific agricultural weather information service based on "high definition" digital climate maps (HD-DCMs) utilizing the state of the art geospatial climatological technology. For example, a daily minimum temperature model simulating the thermodynamic nature of cold air with the aid of raster GIS and microwave temperature profiling will quantify effects of cold air drainage on local temperature. By using these techniques and 30-year (1971-2000) synoptic observations, gridded climate data including temperature, solar irradiance, and precipitation will be prepared for each watershed at a 30m spacing. Together with the climatological normals, there will be 3-hourly near-real time meterological mapping using the Korea Meteorological Administration's digital forecasting products which are prepared at a 5 km by 5 km resolution. Resulting HD-DCM database and operational technology will be transferred to local governments, and they will be responsible for routine operations and applications in their region. This paper describes the project in detail and demonstrates some of the interim results.

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

Estimation of city gas demand function using time series data (시계열 자료를 이용한 도시가스의 수요함수 추정)

  • Lee, Seung-Jae;Euh, Seung-Seob;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.370-375
    • /
    • 2013
  • This paper attempts to estimate the city gas demand function in Korea over the period 1981-2012. As the city gas demand function provides us information on the pattern of consumer's city gas consumption, it can be usefully utilized in predicting the impact of policy variables such as city gas price and forecasting the demand for city gas. We apply lagged dependent variable model and ordinary least square method as a robust approach to estimating the parameters of the city gas demand function. The results show that short-run price and income elasticities of the city gas demand are estimated to be -0.522 and 0.874, respectively. They are statistically significant at the 1% level. The short-run price and income elasticities portray that demand for city gas is price- and income-inelastic. This implies that the city gas is indispensable goods to human-being's life, thus the city gas demand would not be promptly adjusted to responding to price and/or income change. However, long-run price and income elasticities reveal that the demand for city gas is price- and income-elastic in the long-run.

An Input/Output analysis of the transportation industry for evaluating its economical contribution and ripple effect - Forecasting the I-O table in 2003~2009 - (교통부문의 경제적 기여도 및 파급효과 도출을 위한 산업연관분석 연구 - 2003~2009년 산업연관표 중심으로 -)

  • Lim, Siyeong;Kim, Seok;Oh, Eun-ho;Lee, Kyo Sun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.12-20
    • /
    • 2015
  • Construction industry has played a pivotal role in the national economy, but the crisis situation of a construction industry has been worse due to the lack of recognition of the contribution of a construction industry. In particular, the transport sector is responsible for a critical function in the movement of humans and material resources, and has a profound impact on national competitiveness and the peoples' welfare, which requires quantitative analysis. In this study, economic contribution and impact of the transportation sector are measured based on the input-output model. Road and railway facilities account for 1.03% and 0.165% of the total industry respectively, and consist of a final demand and total output. Although value-added inducing effect is small, production inducing effect and backward linkage effect has been high. The results in this study will be used as the basic information for validity of investment and policy decisions.

A Study on Integrated Platform for Prevention of Disease and Insect-Pest of Fruit Tree (특용과수의 병해충 및 기상재해 방지를 위한 통합관리 플랫폼 설계에 대한 연구)

  • Kim, Hong Geun;Lee, Myeong Bae;Kim, Yu Bin;Cho, Yong Yun;Park, Jang Woo;Shin, Chang Sun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.347-352
    • /
    • 2016
  • Recently, IoT technology has been applied in various field. In particular, the technology focuses on analysing large amount of data that has been gathered from the environmental sensors, to provide valuable information. This technique has been actively researched in the agro-industrial sector. Many researches are underway in the monitoring and control for growth crop environment in agro-industrial. Normally, the average weather data is provided by the manual agro-control method but the value may differ due to the different region's weather and environment that may cause problem in the disease and insect-pest prevention. In order to develop a suitable integrated system for fruit tree, all the necessary information is obtained from the Jeollanam-do province, which has the high production rate in the Korea. In this paper, we propose an integrated support platform for the growing crops, to minimize the damage caused due to the weather disaster through image analysis, forecasting models, by using the micro-climate weather information collection and CCTV. The fruit tree damage caused by the weather disaster are controlled by utilizing various IoT technology by maintaining the growth environment, which helps in the disease and insect-pest prevention and also helps farmers to improve the expected production.