• Title/Summary/Keyword: technology classification system

Search Result 1,460, Processing Time 0.029 seconds

The Role of Innovative Activities in Training Students Using Computer Technologies

  • Minenok, Antonina;Donets, Ihor;Telychko, Tetiana;Hud, Hanna;Smoliak, Pavlo;Kurchatova, Angelika;Kuchai, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.105-112
    • /
    • 2022
  • Innovation is considered as an implemented innovation in education - in the content, methods, techniques and forms of educational activity and personality education (methods, technologies), in the content and forms of organizing the management of the educational system, as well as in the organizational structure of educational institutions, in the means of training and education and in approaches to social services in education, distance and multimedia learning, which significantly increases the quality, efficiency and effectiveness of the educational process. The classification of currently known pedagogical technologies that are most often used in practice is shown. The basis of the innovative activity of a modern teacher is the formation of an innovative program-methodical complex in the discipline. Along with programmatic and content provision of disciplines, the use of informational tools and their didactic properties comes first. It combines technical capabilities - computer and video technology with live communication between the lecturer and the audience. In pedagogical innovation, the principles reflecting specific laws and regularities of the implementation of innovative processes are singled out. All principles are elements of a complex system of organization and management of innovative activities in the field of education and training. They closely interact with each other, which enhances the effect of each of them due to the synergistic effect. To improve innovative activities in the training of students, today computer technologies are widely used in pedagogy as a science, as well as directly in the practice of the pedagogical process. They have gained the most popularity in such activities as distance learning, online learning, assistance in the education management system, development of programs and virtual textbooks in various subjects, searching for information on the network for the educational process, computer testing of students' knowledge, creation of electronic libraries, formation of a unified scientific electronic environment, publication of virtual magazines and newspapers on pedagogical topics, teleconferences, expansion of international cooperation in the field of Internet education. The article considers computer technologies as the main building material for the entire society. In the modern world, there is a need to prepare a person for life in a multimedia environment. This process should be started as early as possible, because the child's contact with the media is present almost from the moment of his birth.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Digital Archives of Cultural Archetype Contents: Its Problems and Direction (디지털 아카이브즈의 문제점과 방향 - 문화원형 콘텐츠를 중심으로 -)

  • Hahm, Han-Hee;Park, Soon-Cheol
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.17 no.2
    • /
    • pp.23-42
    • /
    • 2006
  • This is a study of the digital archives of Culturecontent.com where 'Cultural Archetype Contents' are currently in service. One of the major purposes of our study is to point out problems in the current system and eventually propose improvements to the digital archives. The government launched a four-year project for developing the cultural archetype content sources and establishing its related business with the hope of enhancing the nation's competitiveness. More specifically, the project focuses on the production of source materials of cultural archetype contents in the subjects of Korea's history. tradition, everyday life. arts and general geographical books. In addition, through this project, the government also intends to establish a proper distribution system of digitalized culture contents and to control copyright issues. This paper analyzes the digital archives system that stores the culture content data that have been produced from 2002 to 2005 and evaluates the current system's weaknesses and strengths. The summary of our findings is as follows. First. the digital archives system does not contain a semantic search engine and therefore its full function is 1agged. Second, similar data is not classified into the same categories but into the different ones, thereby confusing and inconveniencing users. Users who want to find source materials could be disappointed by the current distributive system. Our paper suggests a better system of digital archives with text mining technology which consists of five significant intelligent process-keyword searches, summarization, clustering, classification and topic tracking. Our paper endeavors to develop the best technical environment for preserving and using culture contents data. With the new digitalized upgraded settings, users of culture contents data will discover a world of new knowledge. The technology we introduce in this paper will lead to the highest achievable digital intelligence through a new framework.

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

A Study of the Application of 'Digital Heritage ODA' - Focusing on the Myanmar cultural heritage management system - (디지털 문화유산 ODA 적용에 관한 시론적 연구 -미얀마 문화유산 관리시스템을 중심으로-)

  • Jeong, Seongmi
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.198-215
    • /
    • 2020
  • Official development assistance refers to assistance provided by governments and other public institutions in donor countries, aimed at promoting economic development and social welfare in developing countries. The purpose of this research is to examine the construction process of the "Myanmar Cultural Heritage Management System" that is underway as part of the ODA project to strengthen cultural and artistic capabilities and analyze the achievements and challenges of the Digital Cultural Heritage ODA. The digital cultural heritage management system is intended to achieve the permanent preservation and sustainable utilization of tangible and intangible cultural heritage materials. Cultural heritage can be stored in digital archives, newly approached using computer analysis technology, and information can be used in multiple dimensions. First, the Digital Cultural Heritage ODA was able to permanently preserve cultural heritage content that urgently needed digitalization by overcoming and documenting the "risk" associated with cultural heritage under threat of being extinguished, damaged, degraded, or distorted in Myanmar. Second, information on Myanmar's cultural heritage can be systematically managed and used in many ways through linkages between materials. Third, cultural maps can be implemented that are based on accurate geographical location information as to where cultural heritage is located or inherited. Various items of cultural heritage were collectively and intensively visualized to maximize utility and convenience for academic, policy, and practical purposes. Fourth, we were able to overcome the one-sided limitations of cultural ODA in relations between donor and recipient countries. Fifth, the capacity building program run by officials in charge of the beneficiary country, which could be the most important form of sustainable development in the cultural ODA, was operated together. Sixth, there is an implication that it is an ODA that can be relatively smooth and non-face-to-face in nature, without requiring the movement of manpower between countries during the current global pandemic. However, the following tasks remain to be solved through active discussion and deliberation in the future. First, the content of the data uploaded to the system should be verified. Second, to preserve digital cultural heritage, it must be protected from various threats. For example, it is necessary to train local experts to prepare for errors caused by computer viruses, stored data, or operating systems. Third, due to the nature of the rapidly changing environment of computer technology, measures should also be discussed to address the problems that tend to follow when new versions and programs are developed after the end of the ODA project, or when developers have not continued to manage their programs. Fourth, since the classification system criteria and decisions regarding whether the data will be disclosed or not are set according to Myanmar's political judgment, it is necessary to let the beneficiary country understand the ultimate purpose of the cultural ODA project.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Present Status and Prospect of Valuation for Tangible Fixed Asset in South Korea (유형고정자산 가치평가 현황: 우리나라 사례를 중심으로)

  • Jin-Hyung Cho;Hyun-Seung O;Sae-Jae Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.91-104
    • /
    • 2023
  • The records system is believed to have started in Italy in the 14th century in line with trade developments in Europe. In 1491, Luca Pacioli, a mathematician, and an Italian Franciscan monk wrote the first book that described double-entry accounting processes. In many countries, including Korea, the government accounting standards used single-entry bookkeeping rather than double-entry bookkeeping that can be aggregated by account subject. The cash-based and single-entry bookkeeping used by the government in the past had limitations in providing clear information on financial status and establishing a performance-oriented financial management system. Accordingly, the National Accounting Act (promulgated in October 2007) stipulated the introduction of double-entry bookkeeping and accrual accounting systems in the government sector from January 1, 2009. Furthermore, the Korean government has also introduced International Financial Reporting Standards (IFRS), and the System of National Accounts (SNA). Since 2014, Korea owned five national accounts. In Korea, valuation began with the 1968 National Wealth Statistics Survey. The academic origins of the valuation of national wealth statistics which had been investigated by due diligence every 10 years since 1968 are based on the 'Engineering Valuation' of professor Marston in the Department of Industrial Engineering at Iowa State University in the 1930s. This field has spread to economics, etc. In economics, it became the basis of capital stock estimation for positive economics such as econometrics. The valuation by the National Wealth Statistics Survey contributed greatly to converting the book value of accounting data into vintage data. And in 2000 National Statistical Office collected actual disposal data for the 1-digit asset class and obtained the ASL(average service life) by Iowa curve. Then, with the data on fixed capital formation centered on the National B/S Team of the Bank of Korea, the national wealth statistics were prepared by the Permanent Inventory Method(PIM). The asset classification was also classified into 59 types, including 2 types of residential buildings, 4 types of non-residential buildings, 14 types of structures, 9 types of transportation equipment, 28 types of machinery, and 2 types of intangible fixed assets. Tables of useful lives of tangible fixed assets published by the Korea Appraisal Board in 1999 and 2013 were made by the Iowa curve method. In Korea, the Iowa curve method has been adopted as a method of ASL estimation. There are three types of the Iowa curve method. The retirement rate method of the three types is the best because it is based on the collection and compilation of the data of all properties in service during a period of recent years, both properties retired and that are still in service. We hope the retirement rate method instead of the individual unit method is used in the estimation of ASL. Recently Korean government's accounting system has been developed. When revenue expenditure and capital expenditure were mixed in the past single-entry bookkeeping we would like to suggest that BOK and National Statistical Office have accumulated knowledge of a rational difference between revenue expenditure and capital expenditure. In particular, it is important when it is estimated capital stock by PIM. Korea also needs an empirical study on economic depreciation like Hulten & Wykoff Catalog A of the US BEA.

Study on E-commerce Evaluation Model : Focused on "Internet Business Model" (전자상거래 평가모형에 관한 연구 : 인터넷 비즈니스모델을 중심으로)

  • Lee, Young-Min
    • Journal of Distribution Science
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2016
  • Purpose - Recently, the importance of rapid change in business models is more and more increasing as the change of information technology environment. Therefore, a variety of business models have emerged. On the other hand, there is no company that can generate revenue. Many enterprises are still maintained while they are changing only their appearance of the business model. Business model is important in e-commerce. However, a lot of researches are targeted only in Web sites. Thus, e-commerce companies do not have the infrastructure for measuring and business models. The purpose of paper is to evaluate factors which are related with the structuring of the e-commerce success. And it proposed a financial items and non-financial items. From the perspectives of administrators and managers, the paper researches the possibility for E-Commerce Evaluation Model as a valuable criteria in measuring business model. Research design, data and methodology - The methods are taken by the classification for the type of business-to-business transactions, transactions subject, and the degree of integration and innovation capabilities. Financial and Non-financial value is used to build E-Commerce Evaluation Model. Evaluation items in Administration's perspective are composed with enhance the effectiveness of the mission, improving efficiency of the administration, and control of costs. Evaluation items in the customer's perspective were measured by customer participation and cooperation with customer Satisfaction. In the case of researching the information system's perspective, three criteria are used such as adequacy of the development process, improvement of the quality of service, and maintenance of standardized information technology. In researching for the ICT competence's perspective, evaluation items were composed of enhanced user capabilities, utilizing new technologies, and empowerment of information workers. Results - In this paper, E-Commerce Evaluation Model with financial and non-financial perspectives shows the possibility to be criteria in the case of measuring business model. Moreover, it gives the positive expectation to be successful criteria. But the research may have ambiguity in its essential concept because it cannot avoid the limitation in selecting evaluation tools from merely the model. It is impossible to exclude the possibility in omitting specific properties which may take place in actual case study. Therefore, In hereafter research, it is necessary to include actual case study research in selecting evaluation tools in order to improve the limit point. Actual measurement items which are derived from actual case study should be subdivided, and it would be more effective to complete the research. Conclusions - In rapid change in business models, there are various kinds of business models. But it is general situation that companies which adopted business models have not brought in revenue. For this reason, E-Commerce Evaluation Model is needed as an important factor for the structuring of the e-commerce success. Although it has the limitation in selecting evaluation tools from model, E-Commerce Evaluation Model proposes the implication for measuring business models as a valuable criteria.