• 제목/요약/키워드: techno-functional

검색결과 265건 처리시간 0.025초

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness

  • Wang, Yajun
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.269-294
    • /
    • 2017
  • This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies' sliding activities.

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제3권1호
    • /
    • pp.75-89
    • /
    • 1995
  • A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.

Modification methods of polyethersulfone membranes for minimizing fouling - Review

  • Sathish Kumar, R.;Arthanareeswaran, G.;Paul, Diby;Kweon, Ji Hyang
    • Membrane and Water Treatment
    • /
    • 제6권4호
    • /
    • pp.323-337
    • /
    • 2015
  • Membrane Fouling was considered as major drawback in various industrial applications. Thus, this paper reviews the surface modification of polyethersulfone (PES) membranes for antifouling performance. Various modification techniques clearly indicate that hydrophilicity has to improve on the PES membrane surface. Moreover, the mechanism of fouling reduction with corresponds to various modification methods is widely discussed. Incorporation of hydrophilic functional groups on PES membrane surface enhances the surface free energy thereby which reduces the fouling. Characterization techniques adopted for the surface modified membranes was also discussed. These studies might be useful for the other researchers to utilize the modification technique for the applications of waste water treatment, chemical process industry and food industry.

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.