• Title/Summary/Keyword: techniques: radial velocity

Search Result 24, Processing Time 0.018 seconds

Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Flow Characteristics of centrifugal Impeller Exit Under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.129-134
    • /
    • 1998
  • This study presents the measured unsteady fluctuation of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that on the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

OKAYAMA PLANET SEARCH PROGRAM

  • SATO BUN'EI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.315-318
    • /
    • 2005
  • We have carried out a precise Doppler survey of G-type giants aiming to unveil the properties of planetary systems in intermediate-mass stars ($1.5-5M_{\bigodot}$). G-type giants are promising targets for Doppler planet searches around massive stars, because they are slow-rotators and have many sharp absorption lines in their spectra and their surface activities are relatively low in contrast to their younger counterparts on the main-sequence (B-A stars). We are now monitoring radial velocities of about 300 late G-type (including early K-type) giants using HIgh Dispersion Echelle Spectrograph (HIDES) at Okayama Astrophysical Observatory. We have achieved a Doppler precision of about 6-7 m/s over a time span of 3 years using an iodine absorption cell. We found that most of the targets have radial velocity scatters of ${\sigma}{\~} 10-20 m\;s^{-1}$ over 1-3 years, with the most stable reaching levels of 6-8 m $s^{-1}$. Up to now, we have succeeded in discovering the first extrasolar planet around a G-type giant star HD 104985, and also found several candidates showing significant radial velocity variations, suggesting the existence of stellar and substellar companions. Observations have continued to establish their variability.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

A Search for Exoplanets around Northern Circumpolar Stars. VIII. Filtering Out a Planet Cycle from the Multi-Period Radial Velocity Variations in M Giant HD 36384

  • Byeong-Cheol Lee;Gwanghui Jeong;Jae-Rim Koo;Beomdu Lim;Myeong-Gu Park;Tae-Yang Bang;Yeon-Ho Choi;Hyeong-Ill Oh;Inwoo Han
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.195-199
    • /
    • 2023
  • This paper is written as a follow-up observations to reinterpret the radial velocity (RV) of HD 36384, where the existence of planetary systems is known to be ambiguous. In giants, it is, in general, difficult to distinguish the signals of planetary companions from those of stellar activities. Thus, known exoplanetary giant hosts are relatively rare. We, for many years, have obtained RV data in evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the M giant HD 36384. We have found two significant periods of 586 d and 490 d. Considering the orbital stability, it is impossible to have two planets at so close orbits. To determine the nature of the RV variability variations, we analyze the HIPPARCOS photometric data, some indicators of stellar activities, and line profiles. A significant period of 580 d was revealed in the HIPPARCOS photometry. Hα EW variations also show a meaningful period of 582 d. Thus, the period of 586 d may be closely related to the rotational modulations and/or stellar pulsations. On the other hand, the other significant period of 490 d is interpreted as the result of the orbiting companion. Our orbital fit suggests that the companion was a planetary mass of 6.6 MJ and is located at 1.3 AU from the host.

Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques (PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구)

  • Paik, Bu-Geun;Kim, Jin;Kim, Kyung-Youl;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

A SEARCH FOR EXOPLANETS AROUND NORTHERN CIRCUMPOLAR STARS VI. DETECTION OF PLANETARY COMPANIONS ORBITING THE GIANTS HD 60292 AND HD 112640

  • Lee, Byeong-Cheol;Park, Myeong-Gu;Han, Inwoo;Bang, Tae-Yang;Oh, Hyeong-Il;Choi, Yeon-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • We report the detection of exoplanet candidates in orbits around HD 60292 and HD 112640 from a radial velocity (RV) survey. The stars exhibit RV variations with periods of 495 ±3 days and 613±6 days, respectively. These detections are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory in Korea. The aim of the survey is to search for planetary or substellar companions. We argue that the periodic RV variations are not related to surface inhomogeneities; rather, Keplerian motions of planetary companions are the most likely interpretation. Assuming stellar masses of 1.7 ± 0.2M (HD 60292) and 1.8 ± 0.2M (HD 112640), we obtain minimum planetary companion masses of 6.5 ± 1.0MJup and 5.0 ± 1.0MJup, and periods of 495.4 ± 3.0 days and 613.2 ± 5.8 days, respectively.

PLANETARY COMPANION IN K GIANT σ PERSEI

  • Lee, Byeong-Cheol;Han, Inwoo;Park, Myeong-Gu;Mkrtichian, David E.;Jeong, Gwanghui;Kim, Kang-Min;Valyavin, Gennady
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • We report the detection of an exoplanet candidate in orbit around ${\sigma}$ Persei from a radial velocity (RV) survey. The system exhibits periodic RV variations of $579.8{\pm}2.4$ days. The purpose of the survey is to search for low-amplitude and long-period RV variations in giants and examine the origin of the variations using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We present high-accuracy RV measurements of ${\sigma}$ Per made from December 2003 to January 2014. We argue that the RV variations are not related to the surface inhomogeneities but instead a Keplerian motion of the planetary companion is the most likely explanation. Assuming a stellar mass of $2.25{\pm}0.5$ $M_{\odot}$, we obtain a minimum planetary companion mass of $6.5{\pm}1.0$ $M_{Jup}$, with an orbital semi-major axis of $1.8{\pm}0.1$ AU, and an eccentricity of $0.3{\pm}0.1$ around ${\sigma}$ Per.

A Search for Exoplanets around Northern Circumpolar Stars. VII. Detection of Planetary Companion Orbiting the Largest Host Star HD 18438

  • Byeong-Cheol Lee;Jae-Rim Koo;Gwanghui Jeong;Myeong-Gu Park;Inwoo Han;Yeon-Ho Choi
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • We have been conducting a exoplanet search survey using Bohyunsan Observatory Echelle Spectrograph (BOES) for the last 18 years. We present the detection of exoplanet candidate in orbit around HD 18438 from high-precision radial velocity (RV) mesurements. The target was already reported in 2018 (Bang et al. 2018). They conclude that the RV variations with a period of 719 days are likely to be caused by the pulsations because the Lomb-Scargle periodogram of HIPPARCOS photometric and Hα EW variations for HD 18438 show peaks with periods close to that of RV variations and there were no correlations between bisectors and RV measurements. However, the data were not sufficient to reach a firm conclusion. We obtained more RV data for four years. The longer time baseline yields a more accurate determination with a revised period of 803 ± 5 days and the planetary origin of RV variations with a minimum planetary companion mass of 21 ± 1 MJup. Our current estimate of the stellar parameters for HD 18438 makes it currently the largest star with a planetary companion.

MINERVA: SMALL PLANETS FROM SMALL TELESCOPES

  • WITTENMYER, ROBERT A.;JOHNSON, JOHN ASHER;WRIGHT, JASON;MCCRADY, NATE;SWIFT, JONATHAN;BOTTOM, MICHAEL;PLAVCHAN, PETER;RIDDLE, REED;MUIRHEAD, PHILIP S.;HERZIG, ERICH;MYLES, JUSTIN;BLAKE, CULLEN H.;EASTMAN, JASON;BEATTY, THOMAS G.;LIN, BRIAN;ZHAO, MING;GARDNER, PAUL;FALCO, EMILIO;CRISWELL, STEPHEN;NAVA, CHANTANELLE;ROBINSON, CONNOR;HEDRICK, RICHARD;IVARSEN, KEVIN;HJELSTROM, ANNIE;VERA, JON DE;SZENTGYORGYI, ANDREW
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.665-669
    • /
    • 2015
  • The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect $15{\pm}4$ new low-mass planets.