• Title/Summary/Keyword: techniques: polarimetric

Search Result 18, Processing Time 0.019 seconds

COMBINED ACTIVE AND PASSIVE REMOTE SENSING OF HURRICANE OCEAN WINDS

  • Yueh, Simon H.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.142-145
    • /
    • 2006
  • The synergism of active and passive microwave techniques for hurricane ocean wind remote sensing is explored. We performed the analysis of Windsat data for Atlantic hurricanes in 2003-2005. The polarimetric third Stokes parameter observations from the Windsat 10, 18 and 37 GHz channels were collocated with the ocean surface winds from the Holland wind model, the NOAA HWind wind vectors and the Global Data Assimilation System (GDAS) operated by the National Center for Environmental Prediction (NCEP). The collocated data were binned as a function of wind speed and wind direction, and were expanded by sinusoidal series of the relative azimuth angles between wind and observation directions. The coefficients of the sinusoidal series, corrected for atmospheric attenuation, have been used to develop an empirical geophysical model function (GMF). The Windsat GMF for extreme high wind compares very well with the aircraft radiometer and radar measurements.

  • PDF

POLARIZATION AND POLARIMETRY: A REVIEW

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.1
    • /
    • pp.15-39
    • /
    • 2014
  • Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and $X/{\gamma}$ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

SHIP DETECTION APPROACH BASED ON CROSS CORRELATION FROM ENVISAT ASAR AP DATA

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.262-265
    • /
    • 2007
  • Preliminary results are reported on ship detection using coherence images computed from cross-correlating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, cross-correlation of multi-look images yields the different degrees of coherence between the images and water. The polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV. In the next step, we examine the technique when the dual-polarization data are split into two multi-look Images.

  • PDF

SHIP DETECTION APPROACH BASED ON CROSSCORRELATION FROM DUAL-POLARIZATION DATA (ASAR AP 다중편파 및 MULTI-LOOK 에 의한 선박탐지 연구)

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.180-184
    • /
    • 2008
  • Preliminary results are reported on ship detection using coherence images computed from crosscorrelating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, crosscorrelation of multi-look images yields the different degrees of coherence between the images and water. The polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV. In the next step, we examine the technique when the dual-polarization data are split into two multi-look images.

  • PDF

Study on Ship Detection Using SAR Dual-polarization Data: ENVISAT ASAR AP Mode

  • Yang, Chan-Su;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 2008
  • Preliminary results are reported on ship detection using coherence images computed from cross-correlating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, cross-correlation of multi-look images yields the different degrees of coherence between the images and water. In this paper, the polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV images, In the next step, we examine the technique when the dual-polarization data are split into two multi-look images, It was shown that the inter-look cross-correlation method could be applicable in the performance improvement of small ship detection and the land masking, It was also found that a simple combination of coherence images from each co-polarised (HH) inter-look and cross-polarised (HV) inter-look data can provide much higher target-detection possibilities.

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

COMPARISON OF LOS DOPPLER VELOCITIES AND NON-THERMAL LINE WIDTHS IN THE OFF-LIMB SOLAR CORONA MEASURED SIMULTANEOUSLY BY COMP AND HINODE/EIS

  • Lee, Jae-Ok;Lee, Kyoung-Sun;Seough, Jungjoon;Cho, Kyung-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the off-limb solar corona are often used for investigating the Alfvén wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two different instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various off-limb coronal regions: flaring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012-2014. CoMP provides the polarization at the Fe xiii 10747 Å coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 Å in 2-D off limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 Å) in a limited field of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the differences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: ±3 km s-1 for LOS Doppler velocity and ±9 km s-1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we find that they are consistent with each other overall in the active regions and equatorial quiet region (0.25 ≤ CC ≤ 0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02 ≤ CC ≤ 0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions (≥ 87% of pixels) except for the polar region (45% of pixels). We find that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06 ≤ CC ≤ 0.61), while they seem to be different in the others (-0.1 ≤ CC ≤ 0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions (≤ 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.